Машиностроение и механика

  • Increase font size
  • Default font size
  • Decrease font size

Детали машин: цепные, фрикционные зубчатые передачи - Материалы и допускаемые напряжения червячных передач

Article Index
Детали машин: цепные, фрикционные зубчатые передачи
Кинематика цепной передачи
Усилия в ветвях цепи
Расчет цепной передачи на износостойкость
Последовательность расчета цепных передач
Фрикционные передачи
Виды повреждений фрикционных передач
Материалы катков
Цилиндрическая фрикционная передача
Расчет на прочность цилиндрических фрикционных передач с гладкими катками
Последовательность проектного расчета фрикционных передач
Зубчатые передачи
Виды повреждений зубьев и критерии работоспособности зубчатых передач
Цилиндрические зубчатые передачи
Выбор модуля и числа зубьев
Особенности расчета косозубых цилиндрических передач
Многопарность и плавность зацепления
Конические зубчатые передачи
Материалы и термообработка
Допускаемые напряжения изгиба при расчете на усталость
Червячные передачи
КПД червячной передачи
Основные критерии работоспособности и расчета
Материалы и допускаемые напряжения червячных передач
Передача винт-гайка
All Pages

Материалы и допускаемые напряжения червячных передач


Червячные пары должны обладать антифрикционными свойствами, износостойкостью и пониженной склонностью к заеданию.

Червяки изготовляют из углеродистых или легированных сталей (марка стали: 40,40Х, 40ХН, 35ХГСА, 12ХНЗАи др.). Наибольшей нагрузочной способностью обладают пары, у которых витки червяка подвергают термообработке до высокой твердости (закалка, цементация и пр.) с последующим шлифованием.

Червячные колеса изготовляют преимущественно из бронзы, реже из латуни или чугуна. Оловянные бронзы типа БрОФ10-1, БрОНФ считаются лучшим материалом для червячных колес. Их применение ограничивают передачами при больших скоростях (vs = 5...25 м/с). Безоловянистые бронзы типа БрАЖ9-4 обладают повышенными механическими характеристиками, но имеют пониженные противозадирные свойства. Их применяют в паре с твердыми (>45HRC) шлифованными и полированными червяками для передач, у которых vs < 5 м/с. Чугун серый или модифицированный применяют при vs < 2 м/с, преимущественно в ручных приводах.

Допускаемые контактные напряжения для оловянных бронз:

clip_image121[15]нр(0,85...0,9) clip_image121[16]в при шлифованном и полированном червяке с твердостью > 45HRC; clip_image121[17]нр = Сv0,75σв при несоблюдении указанных условий для червяка. Для бронзы БрАЖ9-4 clip_image121[18]нр = (300...275) – 25clip_image627ск (МПа) – при шлифованном и полированном червяке с твердостью > 45HRC, Сv коэффициент, учитывающий скорость скольжения выбирают по таблице 11.5.

Таблица 11.5

Vs

≤1

2

3

4

5

6

7

≥ 8 м/с

сclip_image629.

1,33

1,21

1,11

1,02

0,95

0,88

0,83

0,8

При проектном расчете скорость скольжения (м/с) определяют по приближенной зависимости

clip_image631 (11.82)

Эти зависимости используются при длительном сроке службы и нагрузке, близкой к постоянной.

Допускаемые напряжения изгиба для всех марок бронз

clip_image633 (11.83)

Для проверки червячных передач на прочность при кратковременных перегрузках, принимают следующие предельные допускаемые напряжения: оловянные бронзы clip_image121[19]HPmах = 4clip_image121[20]т; бронза БрАЖ9-4 clip_image121[21]НРmах = 2clip_image121[22]т; clip_image121[23]HPmах = 0,8clip_image121[24]T для бронзы всех марок.

Тепловой расчет, охлаждение и смазка. В червячных передачах происходят значительные потери передаваемой мощности на трение, поэтому они работают с большим тепловыделением. Смазочные свойства масла при нагреве резко ухудшаются и возникает опасность заедания передачи. При установившемся режиме работы червячного редуктора количество тепла, выделяемого в нем, равно количеству отводимого от него тепла. Этот тепловой баланс устанавливается при определенном перепаде температур между находящимся в редукторе маслом и окружающим корпус воздухом. Тепловой режим работы редуктора нормальный, если перепад температур находится в допустимых пределах. Поэтому для червячных редукторов производят тепловой расчет. Количество теплоты, выделяющейся в передаче в секунду, или тепловая мощность

clip_image637 (11.84)

где P1 – мощность на входном валу, Вт; η – КПД передачи

Количество тепла, отводимое через поверхность охлаждения корпуса редуктора,

clip_image639 (11.85)

где А – площадь поверхности охлаждения, м2;t1 внутренняя температура редуктора или температура масла, °С; t0 температура окружающей среды (воздуха), °С; К – коэффициент теплоотдачиclip_image641

В площадь поверхности охлаждения А входит площадь наружной поверхности корпуса редуктора без днища. Если корпус снабжен охлаждающими ребрами, то учитывают только 50% площади их поверхности.

Допускаемое значение t1 зависит от сорта масла, его способности сохранять смазывающие свойства при повышении температуры. Для обычных редукторных масел допускают t1= 60...70°С. При проектировании обычно принимают t0 = 20°С.

В закрытых небольших помещениях при отсутствии вентиляции К = 8... 10, в помещениях с интенсивной вентиляцией K=14...17clip_image641[1].

Если

Фclip_image6431, (11.86)

то естественного охлаждения достаточно. В противном случае нужно применять искусственное охлаждение.

Искусственное охлаждение осуществляют следующими способами:

1. Обдув корпуса воздухом с помощью вентилятора.

2. Устраивают внутри корпуса змеевики с проточной водой.

3. Применяют циркуляционные смазки со специальными холодильниками.

Глубина погружения колес в масло не должна превышать высоты зуба или витка червяка для быстроходных колес и 1/3 радиуса тихоходных колес. Рекомендуемое количество масла, заливаемого в корпус, 0,5...0,7 л на 1 кВт передаваемой мощности. Сорт масла выбирают по справочникам в зависимости от окружной скорости и нагруженности передачи.