Машиностроение и механика

  • Increase font size
  • Default font size
  • Decrease font size

Детали машин: цепные, фрикционные зубчатые передачи - Выбор модуля и числа зубьев

Article Index
Детали машин: цепные, фрикционные зубчатые передачи
Кинематика цепной передачи
Усилия в ветвях цепи
Расчет цепной передачи на износостойкость
Последовательность расчета цепных передач
Фрикционные передачи
Виды повреждений фрикционных передач
Материалы катков
Цилиндрическая фрикционная передача
Расчет на прочность цилиндрических фрикционных передач с гладкими катками
Последовательность проектного расчета фрикционных передач
Зубчатые передачи
Виды повреждений зубьев и критерии работоспособности зубчатых передач
Цилиндрические зубчатые передачи
Выбор модуля и числа зубьев
Особенности расчета косозубых цилиндрических передач
Многопарность и плавность зацепления
Конические зубчатые передачи
Материалы и термообработка
Допускаемые напряжения изгиба при расчете на усталость
Червячные передачи
КПД червячной передачи
Основные критерии работоспособности и расчета
Материалы и допускаемые напряжения червячных передач
Передача винт-гайка
All Pages

Выбор модуля и числа зубьев. Величину модуля зацепления выбирают по соотношению

clip_image220. (11.13)

Значение модуля округляют до ближайшего стандартного по справочникам. Для силовых передач обычно рекомендуют принимать m > 1,5 мм. При известном модуле определяют и уточняют остальные параметры передачи: диаметр делительной окружности шестерни

clip_image208[1],

число зубьев шестерни clip_image223; число зубьев колеса z2 = ztu; диаметр делительной окружности колеса d2 = mz2; межосевое расстояние

a = 0,5(d2 ± d1).

Для передач без смещения должно быть выполнено условие:

zl > zmin = 17.

Для уменьшения шума в быстроходных передачах рекомендуют брать z1 > 25. Для окончательного утверждения выбранного значения модуля необходимо проверить прочность зубьев по напряжениям изгиба.

В случае неудовлетворительного результата увеличивают m и определяют новые значения z.

Расчет прочности зубьев по напряжениям изгиба. При нагружении зуб испытывает сложное (плоское) напряженное состояние (рисунок 11.8). Наибольшие нормальные напряжения при изгибе образуются у основания зуба в зоне перехода эвольвенты в гальтель. В этом месте наблюдается и концентрация напряжений. При расчете допустим следующее (рисунок 11.8):

1. Вся нагрузка в зацеплении передается одной парой зубьев и приложена к вершине зуба.

2. Зуб рассматриваем как консольную балку, для которой справедливы гипотеза плоских сечений или методы сопротивления материалов.

Силу Fn переносим по линии действия на ось симметрии зуба и раскладываем на составляющие Ft и Fy. Нормальные напряжения при изгибе в опасном сечении, расположенном вблизи хорды основной окружности,

clip_image225 , (11.14)

где clip_image227— момент сопротивления сечения при изгибе;

А = bw s — площадь у основания зуба; bw — длина зуба; s — ширина зуба у основания; clip_image229 — плечо, на котором действует окружная сила Ft,.

Знак «–» в формуле (11.14) указывает, что за расчетные напряжения принимают напряжения на растянутой стороне зуба, так как именно здесь возникают трещины усталостного разрушения (для стали растяжение опаснее сжатия).

Учитывая геометрическое подобие зубьев различного модуля, величины clip_image229[1] и s выражают через безразмерные коэффициенты:

clip_image232 и clip_image234, (11.15)

где т – модуль зубьев.

После подстановки и введения расчетных коэффициентов получим:

clip_image236 , (11.16)

где KF коэффициент расчетной нагрузки при изгибе; КТ теоретический коэффициент концентрации напряжений, который выбирают по рекомендациям из справочников. Обозначим коэффициент формы зуба.

clip_image238. (11.17)

Для прямозубых передач расчетную формулу (11.16) записывают в виде

clip_image240, (11.18)

где clip_image121[5]FP – допускаемое напряжение изгиба.

При проектировании открытых зубчатых передач проектный расчет выполняют по напряжениям изгиба, при этом формулу (11.18) решают относительно модуля, используя следующие замены bw = clip_image243, clip_image245, тогда clip_image247, принимая КFv=1,5, получим

clip_image249. (11.19)

clip_image251

Рисунок 11.8 – Схема к расчету зубьев на изгиб.

Значениями числа зубьев шестерни z1 и коэффициента clip_image253 задаются по рекомендациям из справочников. Из формулы (11.17) следует, что yF – безразмерный коэффициент, который зависит только от формы зуба (clip_image255, s', clip_image128[7]) и от формы его галтели (коэффициент КТ). Форма зуба при одинаковом исходном контуре режущего инструмента зависит от числа зубьев колеса z.