Машиностроение и механика

  • Increase font size
  • Default font size
  • Decrease font size

Моделирование процессов и объектов в металлургии: системный анализ - Тепловая работа аппарата с частичным теплообменом

Article Index
Моделирование процессов и объектов в металлургии: системный анализ
Наличие структуры или организации
Наличие интегративного качества
Классификация систем по их свойствам
Моделирование технологических процессов
Алгоритм создания модели
Структурный подход для построения математических моделей
Использование структурного подхода для составления моделей на молекулярном уровне
Матричный метод
Моделирование равновесия в системах химических реакций
Моделирование кинетики химических реакций
Скорость сложной химической реакции
Интегрирование уравнений кинетики
Численные методы интегрирования
Химические реакции в потоке вещества
Моделирование явлений тепло- и массопереноса
Моделирование тепловых явлений
Тепловая работа аппарата с частичным теплообменом
All Pages

 

 

Тепловая работа аппарата с частичным теплообменом

1. Рассмотрим аппарат идеального вытеснения, в котором идет экзотермическая реакция.

clip_image210Qi – тепловой эффект реакции.

ri – скорость химической реак-ции.

 

 

 

 

 

 

 

 

Предполагаем, что в аппарате происходит экзотермический эффект, тогда:

clip_image212

 

 

 

1 – количество тепла, выделившегося в единицу времени;

2 – количество тепла, теряемое с поверхности аппарата во внешнюю среду;

ρ – плотность вещества в потоке;

СT – теплоёмкость вещества в потоке;

k – коэффициент теплопередачи от потока вещества к внешней среде;

f – удельная поверхность теплопередачи, отношение поверхности аппарата к его объёму;

Т0 – начальная температура на входе в аппарат;

Т – текущее значение температуры в произвольный момент времени;

Тс – температура среды;

t – время пребывания вещества в аппарате.

Приход тепла в тепловом балансе такого аппарата является суммой физического тепла вещества, поступающего в аппарат с потоком, и тепла, выделяющегося в ходе химической реакции. Расход тепла обусловлен уносом тепла веществом, покидающим аппарат с выходным потоком и потерями в окружающую среду.

Физическое тепло вещества на входе и выходе аппарата определяется его температурой, теплоемкостью и массой. Потери тепла пропорциональны разности температур в аппарате и температуры окружающей среды, а также поверхности теплообмена. Количество выделяющегося тепла зависит от теплового эффекта реакции и пропорционально скорости реакции.

Решение дифференциального уравнения теплового баланса дает функцию изменения температуры от времени пребывания вещества в аппарате. Поскольку время пребывания пропорционально расстоянию от точки входа в аппарат до произвольной точки внутри аппарата, для которой мы определяем значение температуры, можно построить профиль изменения температуры внутри аппарата.

В случае экзотермической химической реакции температура по длине аппарата изменяется от начального значения T0 (в точке входа в аппарат), которое определяется из начальных условий для решения дифференциального уравнения теплового баланса, затем возрастает до некоторого максимума, после чего убывает.

Рост температуры объясняется тем, что количество тепла, выделяющегося в начальный момент реакции, превышает возможности теплообмена с внешней средой. Избыток тепла приводит к увеличению температуры вещества в аппарате.

Скорость химической реакции в начальный момент высока, но поскольку со временем концентрация исходных веществ уменьшается (расходуются исходные вещества), количество тепла, выделяющегося за счет химической реакции в единицу времени также падает. Когда количество выделяющегося и отводимого тепла становится одинаковым, устанавливается максимальная температура в некоторой точке аппарата.

Далее количество выделяющегося тепла становится меньше, чем отводимого. Дефицит тепла в балансе приводит к снижению температуры вещества. На профиле температур в аппарате это отображается   падающим участком.

На практике моделирование аппарата с частичным теплообменом такого типа позволяет проверить, не превысит ли максимальная температура допустимых значений. В таком случае необходимо изменить условия теплообмена в критической зоне аппарата, например использовать принудительное охлаждение или жидкостное охлаждение, что позволит увеличить коэффициент теплопередачи от вещества в аппарате к окружающей среде и количество отводимого тепла.

2. Работа аппарата с экзотермической химической реакцией в режиме идеального перемешивания.

Имеем химическую реакцию с выделением тепла. Количество тепла в единицу времени пропорционально скорости химической реакции:

clip_image214

clip_image216– количество тепла, поступающего с входящим потоком;

clip_image218– количество тепла, выносимое из аппарата выходящим потоком;

clip_image220– количество тепла, выделяющегося в ходе химической реакции;

clip_image222– количество тепла, теряющегося в поверхности аппарата.

clip_image223

Если известны скорость химической реакции и тепловой эффект, то мы считаем всю величину Q3 известной; Q1 тоже известна; Q2 нельзя считать известной (мы ую реакцию с выделением тепла тепла имической реакцией в режиме идеального перемешивания.ообмена, если в аппарате идет экзотерне знаем Т); Q4 тоже неизвестна.

 

 

 

 

 

 

 

 

Решением этого уравнения теплового баланса является значение температуры внутри реактора. В результате моделирования мы определяем такую температуру,  в зависимости от скорости химической реакции, идущей внутри аппарата. Путём итерационного расчёта значение температуры в реакторе уточняется.

Расчёт температуры позволяет судить о том, как в тепловом отношении будет работать аппарат при заданных условиях, при заданном составе вещества на входе, при заданной производительности, при заданной начальной температуре и геометрических размерах аппарата. На основании таких расчётов можно делать вывод, может ли процесс осуществляться автогенно, требуется ли дополнительный отвод тепла или необходим дополнительный источник тепла (топливо, электроэнергия и др.).

Мы познакомились с моделированием объектов на простейшем молекулярном уровне. Реальные модели процессов и объектов металлургии, как правило, значительно сложнее, они включают в себя элементы описания на более высоких уровнях: малого объема, рабочей зоны аппарата и т.д. Лишь в некоторых частных случаях можно результаты моделирования на молекулярном уровне распространить на уровень технологического аппарата в целом. Так, если химические реакции идут гомогенно, а технологический объект является аппаратом идеального перемешивания, не требуется его описания на уровне малого объема и рабочей зоны. В этом случае мы можем рассматривать аппарат в целом, как некую материальную точку в физике, поскольку, например концентрации и температуры в разных точках внутри аппарата одинаковы.

Создание модели реального процесса или технологического аппарата требует усилий, как правило, коллектива специалистов. Тем не менее, главная роль в коллективе на этапе постановки задач, на этапе получения выводов и их трактовки принадлежит к специалисту предметной области – инженеру-металлургу. Только инженер-металлург может определять такие элементы, которые могут относиться к существенным сторонам модели.

Построение математической модели технологического объекта позволяет в пределах имеющихся знаний уточнить закономерности, управляющие работой объекта. В этом смысле модель является инструментом научного познания, позволяя совершенствовать теоретические знания об объекте.

Полученная модель технологических процессов и объектов представляет собой инструмент, позволяющий прогнозировать поведение моделируемых объектов. Под прогнозированием следует понимать возможность расчета выходных характеристик технологического объекта (состава, массы полученного продукта в частности) от известных значений фиксированных входных характеристик и выбранных величин управляющих воздействий.

В таком виде модель представляет инструмент для управления технологическим объектом, позволяя ответить на вопрос: какие величины управляющих воздействий следует выбрать (и поддерживать) для того, чтобы выходные характеристики технологического объекта приняли желаемые значения.

Главное назначение модели – она предоставляет необходимые инструменты для оптимизации.