Наличие структуры или организации
Устойчивая во времени конфигурация связей образует структуру системы.
При описании систем на стадии системного анализа используется иерархический подход: на первом этапе описания системы стремятся представить её как совокупность небольшого количества элементов, при этом каждый элемент представляет собой подсистему и на следующем иерархическом уровне может быть разделен на некоторое количество своих элементов.
Иерархический подход позволяет представить сложные технические системы в простом виде, упрощая понимание взаимодействия всех элементов, что дает возможность представить функционирование всей системы в целом. Чем глубже уровень описания системы, тем больше элементов мы различаем в ее составе.
Например, автомобиль можно рассматривать как техническую систему. Цель такой системы – перевозка пассажиров и/или груза в заданном направлении (по дороге) за счет использования энергии топлива. На первом этапе системного анализа автомобиль является совокупностью небольшого числа элементов: двигатель является источником энергии, ходовая часть обеспечивает передвижение по дороге, рулевое управление и тормоза обеспечивают следование заданной траектории движения, кузов, шасси и кабина объединяют все элементы и несут груз и пассажиров.
При более глубоком анализе, на следующем иерархическом уровне, каждый из перечисленных элементов автомобиля рассматривается как подсистема, состоящая из своих элементов. Двигатель как источник энергии для движения, преобразует химическую энергию топлива в механическую энергию вращения вала. Для этого двигатель должен иметь систему питания топливом и воздухом (без воздуха топливо не горит), систему выпуска отработавших газов, механизм распределения топливо-воздушной смеси по цилиндрам, кривошипно-шатунный механизм, с помощью которого движение поршней в цилиндрах преобразуется во вращение вала.
Такой анализ можно продолжать и далее, до отдельных деталей, из которых вес и состоит. Разумеется, количество таких деталей будет возрастать очень быстро и достигнет многих тысяч. Если начать с того, что автомобиль является совокупностью нескольких тысяч деталей, то взаимодействие их понять невозможно.
Существуют типовые структуры связей в системах:
1.Сетевая структура. Пусть имеется система из пяти элементов, число элементов n=5, каждый из них имеет n – 1 связь.
Каждый элемент в такой структуре связан со всеми остальными.
Достоинства: устойчивость, равноправность элементов. В случае, если какой-либо элемент неработоспособен (потерял связи с остальными элементами системы), система в целом остается работоспособной. Ущерб с точки зрения функционирования системы минимальный и одинаковый для любого из элементов.
Количество связей в такой структуре наибольшее, а каждая связь требует определенных затрат. Следовательно, такая структура надежная, но дорогая. Ее применение оправданно там, где надежность функционирования системы является основным требованием, например в энергетике.
2. Скелетная структура. Рассмотрим систему из девяти элементов, n=9. Пусть система имеет скелетную структуру. Каковы ее особенности?
Такая структура обладает компромиссными качествами и требованиями к элементам. Связи элементов образуют фрагменты, которые объединяются затем в целостную систему. Требования в отношении надежности функционирования элементов становятся неодинаковыми. Так например, нарушения в работе элемента 3 означают минимальный ущерб для системы, означающий потерю только одного этого элемента. Если же перестает работать элемент 1, то система теряет целый фрагмент, а нарушение работы элемента 4 означают, что система распадается на отдельные фрагменты и перестает функционировать. Очевидно, что самые высокие требования по надежности предъявляются к элементу 4, средние – к элементам 1 и 7, минимальные- к элементам 3,6 и 9.
3. Централистская структура. Рассмотрим еще раз систему из девяти элементов, n=9, но имеющую централистскую структуру. Основное ее отличие от предыдущих структур в том, что
количество связей минимально. Это способствует снижению стоимости связей, но выдвигает жесткие требования к надежности элементов. Наиболее надежным должен быть центральный элемент системы, поскольку при невозможности его функционирования система тут же превращается в набор разрозненных элементов, т.е. перестает работать как целостный объект. К периферическим элементам требования по надежности остаются достаточно низкими: утрата любого из этих элементов приводит к минимальному ущербу для функционирования всей системы. Пример такой системы в технике – стационарные телефонные системы связи.