Машиностроение и механика

  • Increase font size
  • Default font size
  • Decrease font size

Моделирование процессов и объектов в металлургии: системный анализ

Article Index
Моделирование процессов и объектов в металлургии: системный анализ
Наличие структуры или организации
Наличие интегративного качества
Классификация систем по их свойствам
Моделирование технологических процессов
Алгоритм создания модели
Структурный подход для построения математических моделей
Использование структурного подхода для составления моделей на молекулярном уровне
Матричный метод
Моделирование равновесия в системах химических реакций
Моделирование кинетики химических реакций
Скорость сложной химической реакции
Интегрирование уравнений кинетики
Численные методы интегрирования
Химические реакции в потоке вещества
Моделирование явлений тепло- и массопереноса
Моделирование тепловых явлений
Тепловая работа аппарата с частичным теплообменом
All Pages

 

Моделирование процессов и объектов в металлургии

СИСТЕМНЫЙ АНАЛИЗ

 

Основным понятием данного раздела является понятие о технологических процессах и объектах как о системах.

Система – составной объект, части которого закономерно объединены и совместно выполняют общую функцию.

Системы могут быть искусственными и естественными.

Естественные системы. Они не имеют определенной цели существования и создаются в ходе эволюции. Примером естественных систем являются биологические, например организмы. Другим примером являются социальные системы.

Искусственные системы отличаются тем, что они создаются для вполне определенной цели (технические и технологические системы).

clip_image001Целью технологических систем в металлургии цветных металлов является переработка сырья, содержащего цветные металлы, с получением продукта, имеющего заданные свойства.

Система, как целостный объект, существует во внешней по отношению к ней среде (можно провести границу между системой и внешней средой).clip_image002 В технологических системах внешняя среда проявляет себя, как источник перерабатываемого сырья и как потребитель произведенного продукта.

Система мысленно или физически может быть разделена на элементы, таким образом система представляет собой совокупность элементов. Элементы объединяются в систему за счет связей. Таким образом, в любой системе существует определённая структура связей.

Задачей системного анализа является определение свойств изучаемой системы. Изучение этих свойств позволяет в последующем выбрать соответствующий задаче метод построения модели. Таким образом, системный анализ является инструментом, позволяющим изучать функционирование сложных технологических систем и выбирать методы моделирования таких систем.

Система – это объект, обладающий набором системных свойств, к числу которых относятся:

1. Целостность и членимость;

2. Наличие существенных связей;

3. Наличие структуры или организации;

4. Наличие интегративного качества.

1. Целостность и членимость. Система, как целостный объект, может быть выделена из внешней среды, а как составной объект, может быть мысленно или физически разделена на составные части. Границами технологической системы в металлургии являются точки поступления исходного сырья и выхода готовой продукции. Масштаб системы может быть различным: от предприятия до отдельно рассматриваемой химической реакции, которая протекает в том или ином технологическом процессе. Как систему можно рассматривать также и отдельный технологический аппарат, совокупность таких аппаратов или технологических операций, т.е. технологическую схему, участок, отделение или цех.

2. Наличие существенных связей. Элементы объединяются в систему за счет связей между элементами. Связи можно разбить на три основные группы:

а) вещественные;

б)энергетические;

в)информационные.

Вещественные связи – представляют собой потоки вещества, циркулирующие между элементами системы. Особенности потоков вещества:

· агрегатное состояние может быть различным (твердое, жидкость, газ);

· фазовое состояние (одно- или многофазное).

Вещественные связи в системе подчиняются закону сохранения вещества: сумма масс всех потоков, поступающих в элемент системы, равна сумме масс, покидающих элемент системы. То есть для каждого элемента системы мы можем составить материальный баланс.

Энергетические связи – представляют собой потоки энергии, циркулирующие между элементами системы. Для металлургических систем виды энергии могут быть различными, наибольшее значение имеют потоки тепловой энергии. В некоторых технологических процессах (электролизе, например) более важное значение имеют и другие виды энергии (электрическая, механическая).

Энергетические связи подчиняются закону сохранения энергии, таким образом, для каждого элемента системы можно составить энергетический (в частности тепловой) баланс.

Информационные связи – представляют собой потоки информации, циркулирующие между элементами системы. Информация, циркулирующая в потоках, представляет собой величины технологических параметров, которые характеризуют работу каждого элемента системы. Чем выше уровень технологии, тем больше количество таких параметров измеряется по ходу технологического процесса, тем большее количество информации получается в информационном потоке. В отличие от вещественных и энергетических связей, информационные потоки описываются не законами сохранения, а законами распространения информации.

Все связи системы характеризуются направленностью.

clip_image003

Е1…Е3 – элементы 1…3.

Связь 1 является прямой связью Е1 и Е3, связь 3 является обратной.

Связи могут быть физически наполненными и не наполненными.

Физически не наполненные связи – это связи типа отношений: А>В

A<B

A=B.

Физически наполненные – связи вещественные и энергетические.

Связи должны обладать устойчивостью, то есть они должны существовать достаточно длительно во времени.

Вещественные связи в технологических системах представляют собой системы промышленного транспорта. Конкретный вид этих систем зависит от свойств вещественной связи: для твердых материалов – механические транспортирующие машины- конвейеры различных типов. Для жидкостей и газов используют системы  трубопроводного транспорта.

Связи в системе должны быть существенными. Существенность оценивается количественно по величине силы связи – это отношение потока вещества (энергии), проходящего через эту связь к общему потоку вещества (энергии) в системе:

clip_image005

где:   qi – доля общего потока вещества (энергии), приходящаяся на i связь;

clip_image007- общий поток вещества (энергии)  в системе.

 

 

В том случае, если сила связи больше критерия значимости α – связь существенная (α = 0,02…0,05). Величина критерия значимости выбирается исходя из ошибок измерения технологических параметров в том или ином технологическом процессе.