Машиностроение и механика

  • Increase font size
  • Default font size
  • Decrease font size

Моделирование процессов и объектов в металлургии: системный анализ - Интегрирование уравнений кинетики

Article Index
Моделирование процессов и объектов в металлургии: системный анализ
Наличие структуры или организации
Наличие интегративного качества
Классификация систем по их свойствам
Моделирование технологических процессов
Алгоритм создания модели
Структурный подход для построения математических моделей
Использование структурного подхода для составления моделей на молекулярном уровне
Матричный метод
Моделирование равновесия в системах химических реакций
Моделирование кинетики химических реакций
Скорость сложной химической реакции
Интегрирование уравнений кинетики
Численные методы интегрирования
Химические реакции в потоке вещества
Моделирование явлений тепло- и массопереноса
Моделирование тепловых явлений
Тепловая работа аппарата с частичным теплообменом
All Pages

 

 

Интегрирование уравнений кинетики

Пусть идет химическая реакция разложения вещества А, в результате которой образуется вещество В. Экспериментально установлено, что она имеет первый порядок по концентрации А, а значение константы скорости для условий ее осуществления равно k. Это отображено на схеме реакции ниже.

k; 1 по А

clip_image106A В.

Скорость реакции равна ra = –kCA, или

clip_image108 .

Определим начальные условия для решения дифференциального уравнения кинетики. Будем считать, что в  начальный момент реакции нам известна концентрация вещества А, обозначим ее как САо. Запишем начальные условия в виде clip_image110. Проинтегрируем полученное уравнение, используя интегралы с подстановкой пределов. Пределы интегрирования определяются из начальных условий: когда время равно нулю, концентрация А равна начальной, в произвольный момент t концентрация равна СА:

clip_image112.

 

 

В результате интегрирования имеем:

clip_image114,

 

заменяя разность логарифмов логарифмом частного имеем далее:

clip_image116,

 

проводя потенцирование получим:

clip_image118.

 

 

После всех преобразований решение дифференциального уравнения представляет собой экспоненциальную убывающую функцию:

clip_image120.

 

Проверим, не противоречит ли полученное решение условиям нашей задачи. При t=0, т.е. в момент начала химической реакции СA=CA0, поскольку экспонента обращается в единицу. Действительно, в начальный момент концентрация вещества А равна начальной. При t→∞ экспонента с отрицательным показателем стремится по величине к нулю. За бесконечно большое время вследствие химической реакции все вещество разлагается и образует В.