Машиностроение и механика

  • Increase font size
  • Default font size
  • Decrease font size

Процессы получения металлов: цинк, производство меди и никеля, способы получения алюминия - Огнеупорные и теплоизоляционные материалы

Article Index
Процессы получения металлов: цинк, производство меди и никеля, способы получения алюминия
Области применения цинка
Основные способы извлечения цинка из сырья
Обжиг цинковых сульфидных концентратов
Обжиг цинковых концентратов для выщелачивания
Типы аппаратурного оформления обжига в КС
Практика обжига в печи КС
Химизм кислотно-основных взаимодействий при выщелачивании
Углетермическое восстановление цинка
Вельцевание цинковых кеков, цинковистых шлаков и других материалов
Дистилляция цинка из агломерата
Электротермическая дистилляция цинка
Дистилляция цинка в шахтных печах
Производство меди и никеля
Медные руды
Никелевые руды
Электроплавка окисленных никелевых руд
Электроплавка сульфидных медно-никелевых руд и концентратов
Конвертирование никелевых и медно-никелевых штейнов
Конвертирование никелевых и медно-никелевых штейнов
Переработка медно-никелевого файнштейна
Обжиг никелевого файнштейна и концентрата
Восстановительная электроплавка закиси никеля
Способы получения меди из рудного сырья
Способы получения алюминия
Сырье и основные материалы
Фториды
Углеродные футеровочные материалы
Огнеупорные и теплоизоляционные материалы
Корректировка состава электролита
Выливка металла
Транспортно-технологическая схема цеха электролиза
Способы очистки отходящих газов
All Pages

Огнеупорные и теплоизоляционные материалы


Теплоизоляционные и огнеупорные материалы используют в катодном устройстве электролизеров для снижения потерь тепла, предохранения катодного кожуха от воздействия высокой температуры и, в конечном итоге, для повышения срока службы электролизеров. По назначению эти материалы делят на:

материалы для подложек под катодные блоки (барьерные материалы);

огнеупорные материалы, устанавливаемые под катодными блоками и воспринимающие на себя воздействие проникающих фторидов;

теплоизоляционные материалы, снижающие потери тепла.

Очевидно, что все перечисленные требования не могут быть представлены в одном материале. Поэтому для каждого материала разработаны соответствующие требования.

3.6.1. Барьерные материалы служат мягкой подложкой под катодные блоки и препятствуют проникновению компонентов расплава в нижние слои футеровки. В качестве таких материалов применяют подушки из подовой массы, глинозема и 1 других материалов. Однако до настоящего времени нет единого мнения о наиболее предпочтительных барьерах, поэтому на отводах используют различные материалы для подложек. В последние годы за рубежом в качестве барьеров используют два типа порошков:

— тип А, основанный на анортите, СаО • А12О3 • 2SiO2;

— тип Б, основанный на оливине MgO • SiO2.

3.6.2. Огнеупорные материалы должны обеспечивать медленное проникновение криолитоглиноземных расплавов, сохранять форму и объем, а также исключать попадание электролита в зону расположения теплоизоляции.

Данным требованиям удовлетворяет множество материалов. Так, на КрАЗе в широком масштабе испытывались электролизеры с глиноземной изоляцией, но, несмотря на ряд преимуществ, они не нашли широкого применения.

В настоящее время для этих целей широко используют шамот — алюмосиликатный материал, содержащий 28—45 % А12О3, который дешевле других огнеупоров. В России широкое распространение получил кирпич различных размеров марки ШБ (ГОСТ 390-96), который содержит не менее 28 % А12О3, имеет огнеупорность не ниже 1650 °С и открытую пористость не более 30 %. В зарубежной практике находят применение муллитовые изделия с содержанием глинозема более 45 %. Теплоизоляционные материалы предназначены для снижения тепловых потерь и, следовательно, они должны обладать низкой теплопроводностью. Для этой цели используют различные материалы: диатомит, вермикулит (вспученная слюда с различной плотностью), силикат кальция (СаО • SiO2) и силикат алюминия—кальция (СаО • А12О3 • SiO2). В России широкое распространение для этих целей получили диатомитовые изделия, в том числе диатомитовый кирпич марок Д-500 и Д-600. В зарубежной практике, а в последние годы и на отечественных заводах применяют вермикулит различных типов, отличающийся в основном объемной плотностью.

Проводниковые материалы

Ток подводят к ванне металлическими проводниками — алюминий, медь, сталь, а анод и подина ванны выполнены из углерода, который также является проводником тока.

В современных электролизерах медь почти не применяют из-за ее дефицитности и высокой стоимости. Указанная максимальная температура является предельно допустимой, при которой сохраняются механические свойства и электропроводность. Электрическое сопротивление стали примерно в 5 раз выше, чем у алюминия, и ее используют для подвода к аноду и отвода тока от подин, поскольку нет более подходящего материала, который работает при температуре до 1100 оС.

Отношение теплопроводности к электропроводности у всех металлов практически одинаково, а у углерода оно в 35—40 раз больше. Это значит, что применять углерод для длинных токоподводов нерационально, т.е. ток к расплаву следует подводить короткими углеродистыми проводниками.