Машиностроение и механика

  • Increase font size
  • Default font size
  • Decrease font size

Металлургия стали: основные реакции сталеплавильных процессов, конвертерное производство стали, выплавка стали в подовых сталеплавильных агрегатах - Шлакообразование и шлаковый режим мартеновской плавки

Article Index
Металлургия стали: основные реакции сталеплавильных процессов, конвертерное производство стали, выплавка стали в подовых сталеплавильных агрегатах
Сталеплавильные шлаки
Хими­ческие свойства шлаков
Основные реакции сталеплавильных процессов
Основы синхронизации процессов обезуглероживания и нагрева металла
Окисление и восстановление кремния
Окисление и восстановление марганца
Окисление и восстановление фосфора
Удаление серы (десульфурация металла)
Конвертерное производство стали
Устройство кислородного конвертера с верхней продувкой
Шихтовые материалы и требования к ним
Технология кислородно-конвертерной плавки
Дутьевой режим плавки
Поведение составляющих чугуна при продувке
Шлакообразование и требования к шлаку
Поведение железа и выход годного металла
Материальный и тепловой баланс кислородно-конвертерной плавки
Переработка лома в конвертерах
Конвертерные процессы с донной продувкой кислородом
Поведение примесей
Сравнение процессов с верхней и донной продувкой кислородом
Конвертерные процессы с комбинированной продувкой
Выплавка стали в подовых сталеплавильных агрегатах
Устройство мартеновской печи
Конструкция отдельных элементов мартеновской печи
Основные особенности и разновидности мартеновского процесса
Основные периоды мартеновской плавки и их значение
Тепловая работа и отопление мартеновских печей
Шлакообразование и шлаковый режим мартеновской плавки
Скрап-кислородный процесс
Показатели и перспективы мартеновского производства стали
Сущность работы двухванных сталеплавильных агрегатов
Технология плавки в двухванных сталеплавильных агрегатах
Перспективы применения двухванных печей
All Pages

Шлакообразование и шлаковый режим мартеновской плавки


Для мартеновского процесса шлаковый режим имеет исключи­тельно важное значение, так как в мартеновской печи нагрев ме­талла происходит через слой шлака, т е шлак в мартеновской плавке участвует не только в рафинировании металла, но и в его нагреве.

Основные источники образования шлака следующие: продукты окисления примесей чугуна и скрапа (SiО2, MnO, Р2О5, Сг2О3 и др); продукты разъедания футеровки агрегата (MgO и СаО в основ­ных печах и SiO2 в кислых); загрязнения, внесенные шихтой (песок, глина и др.), т. е. SiО2, A12O3; миксерный шлак; ржавчина, покрывающая скрап, т. е. Fe3O4, Fe2O3, FeO; добавочные материалы (известняк, известь, железная руда, агломерат, марганцевая руда и др.) — СаО, Fe2O3, MnO, SiO2, A12O3 и др.

Шлакообразование в мартеновской плавке начинается еще в период прогрева лома и получает большое развитие в начале плавления после заливки чугуна Первичный шлак, образующийся в период прогрева, состоит главным образом из оксидов железа и относительно меньшего количества оксидов марганца, кремния и кальция. По ходу плавления состав шлака непрерывно изменяется вследствие окисления примесей чугуна, всплывания из нижних слоев ванны ранее заваленных сыпучих материалов и удаления образовавшегося пенистого шлака.

Характер изменения содержания основных компонентов шлака по ходу плавки в мартеновском процессе примерно такой же, что в кислородно-конвертерном.

Особенности мартеновского процесса при высоком содержании чугуна в шихте

На первой стадии развития мартеновского процесса, когда печи имели малую вместимость (до 5-10 т), малую удельную нагрузку на подину (- 1 т/м2) и плавка в них длилась > 12 ч, кислорода, поступающего из газовой фазы печи, было достаточно для окисли­тельного рафинирования металла даже при высоком содержании чугуна в шихте. По мере увеличения вместимости печей и улучше­ния их тепловой работы, кислорода, поступающего из газовой фазы через слой шлака в металл стало недостаточно, поэтому рафинирование, особенно окисление углеро­да, отставало от нагрева металла. Для устранения этого недостат­ка еще в 80-х годах XIX в. в качестве дополнительного источника кислорода начали применять железную руду. Этот вариант процесса получил название скрап-руд­ного.

Применение кислорода для интенсивной продувки мартеновс­кой ванны кислородом, получившее распространение в 60-х годах XX в., позволило исключить твердые окислители из шихты или ограничиться малым расходом их. Так появился новый вариант мартеновского процесса, который называется скрап-кислородным процессом.

В настоящее время при переде­ле шихт с высоким расходом жидкого чугуна используется процесс, занимающий промежуточное положение между скрап-рудным и скрап-кислородным: недостаток кислорода частично компенсирует­ся кислородом твердых окислителей, даваемых в завалку, и час­тично кислородом дутья.

 

Скрап-рудный процесс без продувки ванны кислородом

Варианты мартеновской плав­ки различаются в первую очередь способом достижения заданного содержания углерода в металле к моменту расплавления ванны, от которого зависят нормальное проведение периода доводки и выпуск металла заданного состава. При скрап-рудном процессе эта задача решается введением в период завалки определенного (оптимального для данных условий) количества твердого окислителя. В этом состо­ит основная особенность скрап-рудного процесса.

Расход твердого окислителя в период завалки определяется из баланса кислорода, в приходные статьи которого входят кислород поступающий из атмосферы печи, из окалины лома, из СО2 известняка; в расходные: кислород, расходуемый на окисление углерода и примесей чугуна, а также на образование оксидов железа шлака. Формула для расчета расхода руды, полученная из уравнения балан­са кислорода, может быть представлена в виде:

clip_image022

Каждая из этих статей зависит от большого числа факторов, поэтому развернутая формула получается сложной и ею в производственных условиях можно пользоваться лишь в том случае, если расчеты выполняют при помощи ЭВМ.

Обычно расход твердого окислителя (руды, агломера­та, окатышей) в период завалки колеблется в пределах 5-15%, при высокой доле (>70%) чугуна в шихте, достигая >20%.

Основными факторами, существенно влияющими на расход твердых окислителей в период завалки, являются следующие:

1. Доля чугуна в шихте и его химический состав. Чем выше количество чугуна в шихте и окисляющихся примесей в нем, тем больше расход кислорода на окисление примесей металла и на образование оксидов железа шлака, меньше поступление в ванну кислорода из газовой фазы печи и в виде окалины лома. При постоянстве других условий с уве­личением расхода чугуна в шихту и содержания окисляющихся примесей в нем расход руды в период завалки увеличивается.

2. Вместимость или удельная нагрузка на подину печи, от ко­торой зависит поступление кислорода из газовой фазы печи.

С увеличением удельной нагруз­ки на подину поступление кислорода из атмосферы печи уменьша­ется. Удельная нагрузка на подину возрастает при повышении вме­стимости печи. Следовательно, с увеличением вместимости печи при повышении удельной нагрузки на подину расход руды в пери­од завалки возрастает. Но при увеличении удельной нагрузки на подину, если другие условия остаются постоянными, продолжитель­ность периода плавления возрастает. Это вызывает повышение поступления кислорода из газовой фазы печи, т. е. уменьшение расхода руды в период завалки. Однако в целом с увеличением вместимости печи при постоянстве других условий расход руды в период завалки, как правило, возрастает.

3. Тепловая работа печи влияет на расход руды в завалку, изменяя поступление кислорода из атмосферы печи. Чем лучше теп­ловая работа печи, особенно при интенсификации сжигания топ­лива кислородом, тем выше удельное поступление кислорода из газовой фазы печи и меньше продолжительность плавления, т. е. с одной сто­роны происходит увеличение поступления кислорода (уменьшение расхода руды в период завалки), а с другой - уменьшение длительности периода плавления вызывает обратный эффект (увеличение расхода руды). Однако улучшение тепловой работы печи обычно вызы­вает уменьшение расхода руды в период завалки, т. е. наблю­дается более существенное увеличение удельного поступления кислорода из газовой фазы печи, чем уменьшение продолжитель­ности плавления.

4. Содержание углерода в металле по расплавлении. Чем больше оно, тем меньше расход кислорода на окисление углерода и расход руды в период завалки

Кроме указанных основных факторов, на расход твердых окис­лителей в период завалки влияют режим спуска шлака в период плавления и качество лома. Чем обильнее и раньше спускают шлак, тем больше расход кислорода на образование оксидов железа шлака и расход руды в период завалки. Чем мельче и окисленнее лом, тем больше количество кислорода поступает с окалиной и меньше расход руды в период завалки.