Машиностроение и механика

  • Increase font size
  • Default font size
  • Decrease font size

Металлургия стали: основные реакции сталеплавильных процессов, конвертерное производство стали, выплавка стали в подовых сталеплавильных агрегатах - Поведение железа и выход годного металла

Article Index
Металлургия стали: основные реакции сталеплавильных процессов, конвертерное производство стали, выплавка стали в подовых сталеплавильных агрегатах
Сталеплавильные шлаки
Хими­ческие свойства шлаков
Основные реакции сталеплавильных процессов
Основы синхронизации процессов обезуглероживания и нагрева металла
Окисление и восстановление кремния
Окисление и восстановление марганца
Окисление и восстановление фосфора
Удаление серы (десульфурация металла)
Конвертерное производство стали
Устройство кислородного конвертера с верхней продувкой
Шихтовые материалы и требования к ним
Технология кислородно-конвертерной плавки
Дутьевой режим плавки
Поведение составляющих чугуна при продувке
Шлакообразование и требования к шлаку
Поведение железа и выход годного металла
Материальный и тепловой баланс кислородно-конвертерной плавки
Переработка лома в конвертерах
Конвертерные процессы с донной продувкой кислородом
Поведение примесей
Сравнение процессов с верхней и донной продувкой кислородом
Конвертерные процессы с комбинированной продувкой
Выплавка стали в подовых сталеплавильных агрегатах
Устройство мартеновской печи
Конструкция отдельных элементов мартеновской печи
Основные особенности и разновидности мартеновского процесса
Основные периоды мартеновской плавки и их значение
Тепловая работа и отопление мартеновских печей
Шлакообразование и шлаковый режим мартеновской плавки
Скрап-кислородный процесс
Показатели и перспективы мартеновского производства стали
Сущность работы двухванных сталеплавильных агрегатов
Технология плавки в двухванных сталеплавильных агрегатах
Перспективы применения двухванных печей
All Pages

Поведение железа и выход годного металла


В кислородно-конвертерном процессе, как в любом другом сталеплавильном процессе, в зависимости от периода плавки возможно как окисление, так и восстановление железа. Во время присадки твердых окислителей происходит восстановление железа в первую очередь углеродом металла по реакции Fe2O3 + 3[С] = 3{СО} + 2[Fe]. В период интенсивного формирования шлака в начале и конце плавки (при [С] < 0,1%) железо окисляется.

Если рассматривать плавку в целом, то в кислородно-конвертерных процессах наблюдается окисление железа, так как обычно присаживаемое количество оксидов железа в виде твердых окис­лителей (< 1 % от садки) меньше их количества, необходимого для формирования шлака (2-3%), поэтому неизбежные потери железа в результате его окисления и перехода в шлак обычно составляют 0,7-1,5%. Если плавка в целях возможно большей переработки лома ведется без твердых окислителей, то потери железа в результате его окисления повышаются до 1,5-2,0%. Кроме того, же­лезо испаряется и уносится газами в виде частичек Fе2О3 бурого цвета. Средний выход газа в кисло­родных конвертерах составляет - 70 м3/т, а среднее содержание в нем пыли (в основном оксиды железа) 100-150 г/м3, следователь­но, потеря железа в результате испарения в среднем составляет 1-1,5 от массы металла и уменьшаются при сокращении длительности продувки.

Часть железа теряется с корольками железа шлака. Содержание корольков железа в шлаке неиз­бежно и в конечном конвертерном шлаке колеблется в пределах 2-5%. Нижний предел относится к случаям выплавки низкоуглеро­дистой стали (0,5% [С] низкоокисленный шлак). Количество шлака 11-16%, поэтому потери с король­ками составляют > 0,5%.

Вынос мелких капель металла отходящими газами наблюдается в начале продувки, когда поверхность металла не защищена шлаком и усиливается при приближении фурмы к поверхности ванны. В связи с этим следует обеспечивать раннее образование шлака. Общие потери металла с выбросами и выносом составляют в среднем около 1 %.

В целом общие потери железа при плавке стали в конвертерах с верхней подачей дутья обычно 3-4%, но могут достигать >5%, если продувка и шлакообразование протекают не в оптимальном режиме.

Кроме железа в процессе продувки окисляется весь кремний, большая часть углерода и марганца чугуна. Выход жидкой стали (выход годного) при кислородно-конвертерном процессе с учетом всех потерь составляет 88—90 % от массы металлической шихты.