Металлургия стали
Основные этапы развития сталеплавильного производства
Металлургия стали как производство возникла около 3,5 тыс. лет назад в северной Африке (Египет, Сирия). В процессе развития сталеплавильнго производства основные агрегаты для выплавки стали и технология производства претерпели значительные изменения: прямое получение железа из руды в сыродутных горнах с получением кричного железа, получение стали окислительным плавлением чугуна на поду специальной пудлинговой печи (от англ. puddle — месить, перемешивать), тигельный процесс, конвертерный и мартеновский процессы, электрометаллургия стали, переплавные процессы (вакуумно-индукционный переплав (ВИП), вакуумно-дуговой (ВДП), электрошлаковый (ЭШП), электронно-лучевой (ЭЛП), плазменно-дуговой ПДП и др.), внепечная обработка стали.
В настоящее время мировое производство стали достигает примерно 750 млн. т. основными способами производства являются кислородно-конвертерный ( 50%), электросталеплавильный (~20%) и мартеновский (<30%); ~ 2% стали производят в электропечах с использованием материалов, полученных на установках прямого восстановления.
При мартеновском, конвертерном и электродуговом способах производства стали получение металла осуществляется в две стадии: 1) восстановление в доменных печах железа из руды, т.е. получение чугуна; 2) окисление в сталеплавильных агрегатах углерода, кремния, марганца, фосфора, удаление серы, т.е. получение из чугуна стали требуемого состава.
Классификация сталей
Полученные тем или иным способом стали чрезвычайно разнообразны по своим свойствам и составу. Их классифицируют по способу производства, назначению, качеству, химическому составу, характеру застывания в изложницах и строению получающегося слитка.
По способу производства сталь может быть тигельной, кислой и основной мартеновской, бессемеровской, томасовской, конвертерной, электросталью, электрошлакового переплава и полученной другими способами.
По назначению можно выделить следующие основные группы сталей:
1. Конструкционная сталь, которую применяют при изготовлении различных металлоконструкций (для строительства здании, мостов, различных машин и т. п.).
2. Топочная и котельная сталь — низкоуглеродистая сталь, применяемая для изготовления паровых котлов и топок.
3. Сталь для железнодорожного транспорта — рельсовая мартеновская и конвертерная сталь, осевая сталь, сталь для бандажей железнодорожных колес.
4. Подшипниковая сталь служит материалом для изготовления шариковых и роликовых подшипников.
5. Инструментальная сталь применяется для изготовления различных инструментов, резцов, валков прокатных станов, деталей кузнечного и штамповочного оборудования.
Кроме указанных, имеется еще ряд групп сталей, назначение которых видно из самого их названия: рессорно-пружинные, электротехнические, трансформаторные, динамные, нержавеющие, орудийные, снарядные, броневые, трубные стали и др.
По качеству стали обычно делят на следующие группы: сталь обыкновенного качества, качественную и высококачественную. Различия между этими группами заключаются в допускаемом содержании вредных примесей (в первую очередь серы и фосфора), а также в особых требованиях по содержанию неметаллических включений. Например, в сталях обыкновенного качества содержание серы и фосфора не должно превышать 0,055—0,060, в качественных сталях — не более 0,040—0,045, в высококачественных — не более 0,020— 0,030 % (в некоторых случаях содержание серы и фосфора допускается в очень низких пределах: 0,010 и даже 0,005 %).
По химическому составу различают:
1) сталь с низким содержанием примесей, или так называемое технически чистое железо, так как суммарное содержание других элементов составляет всего лишь около 0,1%;
2) Углеродистая сталь — сталь, не содержащая легирующих компонентов (кроме углерода). В зависимости от назначения эта сталь подразделяется на низкоуглеродистую (0.25 % С); среднеуглеродистую (0,25- 0,60 % С); высокоуглеродистую (0,6-2,0 % С).
3) Легированная сталь — сталь, содержащая, помимо углерода, другие легирующие компоненты, которые в свою очередь делят на низколегированные стали (до 10 % ЛЭ); средне (10-20% ЛЭ) и высоколегированные стали (более 20%)..
Для легированных сталей применяются следующие буквенные обозначения элементов: углерод – У; марганец — Г; кремний — С; никель — Н; вольфрам — В; молибден — М; хром — X; ванадий — Ф; алюминий — Ю; титан — Т; медь — Д;
В обозначении легированных марок стали применяют в определенных сочетаниях цифры и буквы. Принцип маркировки стали: цифры до букв означают содержание углерода в сотых долях процента (если менее 0,08 %, то 0), буквы — наименование легирующего элемента, а цифра после букв—содержание легирующего элемента в процентах (если оно превышает 1,5 %).
Марки конструкционной стали обыкновенного качества обозначают следующим образом: Ст0, Ст1, Ст2 и т.д. Обозначениями качественных конструкционных сталей служат: 10, 20, 45 и т. д. Качественная углеродистая сталь обозначается У7, У8, ..., У12, где буква У — углеродистая, а цифра — содержание углерода в десятых долях процента.
Стали специального назначения обозначаются следующим образом: А - автоматная сталь, Р - быстрорежущая инструментальная сталь, Ш - подшипниковые стали, Э - электротехнические стали, Е - для постоянных магнитов, ЭП - экспериментальные стали.
В зависимости от микроструктуры стали бывают перлитные, мартенситные, аустенитные или ферритные.
По степени раскисленности: спокойные, кипящие и полуспокойные. Поведение металла в изложницах зависит от степени его раскисленности — чем полнее раскислена сталь (удален кислород), тем спокойнее кристаллизуется слиток (раскислением стали называют процесс удаления из металла растворенного в нем кислорода). Так, например, в результате обильного газовыделения кипящая сталь при кристаллизации в изложнице кипит (отсюда название стали). Наоборот, спокойная сталь кристаллизуется без видимых эффектов, спокойно.
Сталеплавильные шлаки
Шлак, представляющий собой сплав оксидов, сульфидов, нитридов, фосфидов, карбидов и др. соединений и является неизбежным побочным продуктом любого современного способа производства стали в открытых агрегатах.
Образование шлака обусловлено:
1. во-первых, с обязательным окислением элементов металлической фазы во время плавки и образованием при этом различных нелетучих (шлакообразующих) оксидов, имеющих меньшую плотность, чем металл, и собирающихся на поверхности металла;
2. во-вторых, с неизбежным разрушением футеровки в условиях высоких температур под действием оксидов, образующихся в результате окисления компонентов металлической фазы.
3. в-третьих, попаданием в ванну оксидов извне с неметаллическими шихтовыми материалами (флюсов и твердых окислителей), загрязнениями (мусора) лома и миксерного или доменного шлака.
Источники образования шлака
1. Продукты окисления примесей чугуна и лома — кремния, марганца, фосфора, серы, хрома и других элементов (SiO2, MnO, Р2О5, FeS, MnS, Сr2О3 и др.).
2. Продукты разрушения футеровки агрегата — при разъедании основной футеровки (доломита, магнезита) в шлак переходят СаО, MgO, при разъедании кислой (динас) — SiO2.
3. Загрязнения, внесенные шихтой (песок, глина, миксерный шлак и т.п.), —SiO2, Аl2О3, MnS и т.п.
4. Ржавчина, покрывающая заваливаемый в сталеплавильные агрегаты лом, — оксиды железа.
5. Добавочные материалы и окислители (известняк, известь, боксит, плавиковый шпат, железная и марганцевая руды и т.п.) — СаО, Аl2О3, SiO2, FeO, Fe2О3, MnO, CaF2 и т. п.
Роль шлаков противоречива, поскольку она может быть как полезной (положительной), так и вредной (отрицательной).
Положительное значение шлаков состоит в способности поглощать фосфор (дефосфорация) и серу (десульфурация) из металла. Такими свойствами обладают только основные шлаки, в которых преобладает содержание основных оксидов, прежде всего СаО.
В подовых процессах, т. е. в процессах, осуществляемых в мартеновских, двухванных и электродуговых печах, положительная роль шлаков выражается также в защите металла от поступающих из атмосферы печи вредных примесей, главным образом газов.
Отрицательное значение шлаков в основном выражается в следующем: 1) разрушающем действии на футеровку агрегата; 2) увеличении потери (угара) полезных примесей в процессе окислительного рафинирования, а также раскисления и легирования; 3) увеличении потери железа в виде оксидов и корольков, содержащихся в шлаке. Указанные отрицательные действия шлаков на ход и результаты плавки в той или иной степени проявляются в любых сталеплавильных процессах. Установление оптимального шлакового режима плавки должно означать обеспечение возможно большего проявления положительной их роли и меньшего - отрицательной.
Состав шлаков
Строение шлаков и их основные физико-химические свойства определяются содержанием в них различных оксидов, которое условно принято называть химическим составом шлака.
Шлаки, в которых преобладают основные окислы (CaO, MgO, MnO, FeO), называют основными шлаками, а шлаки, в которых преобладают кислотные окислы (SiO2, P2О5)— кислыми шлаками. В зависимости от характера шлаков и процессы называют основными или кислыми (например, основной мартеновский процесс, кислый мартеновский процесс). Если футеровка выполнена из кислого (кремнеземистого) материала, то шлак должен быть также кислым, т. е. главным компонентом должен быть SiO2, иначе разрушающее действие шлака на футеровку может оказаться очень значительным. В агрегатах, имеющих основную (магнезитовую или доломитовую) футеровку, плавку можно вести только под основными шлаками, главным компонентом которых является CaO.
Химические свойства шлаков
1. Основность шлака
Существует множество показателей характеризующих основность шлака, но любая из них прежде всего должна позволять оценить фосфоро- и серопоглотительную способность шлака.
При переделе малофосфористых чугунов за показатель основности шлака принимают отношение: В= (CaO)/(SiO2), при переделе высокофосфористых чугунов - В = (CaO)/(SiO2 + P2О5).
Шлаки, в которых отношение (CaO/SiO2) < 1,6 называют низкоосновными; у шлаков средней основности CaO/SiO2 == 1,6—2,5; у высокоосновных шлаков (CaO/SiO2) > 2,5.
Кислые шлаки состоят главным образом из кислотного окисла SiО2 и некоторого количества таких основных окислов, как FeO и MnO. Составы кислых шлаков характеризуются степенью их кислотности (или просто «кислотностью»), выражаемой обычно отношением SiО2/(FeO + MnO).
2. Окисленность шлака - это способность его оказывать окислительное воздействие на металлическую фазу, передавая кислород в эту фазу.
В общем случае окислительная способность шлака находится в сложной зависимости от содержания в нем оксидов железа (FeO), его основности (В), концентрации углерода в металле ([С]) и температуры ванны. Окислительная способность шлака возрастает по мере повышения содержания оксидов железа в нем, концентрации углерода в металле и температуры и снижения основности шлака до 1,7-1,8.
В качестве меры окисленности шлака в производственных условиях обычно принимают или содержание (в %) в шлаке FeO, или содержащуюся в нем сумму FeO + Fе2О3, или содержание в шлаке железа.
Физические свойства шлаков определяют поведение шлаков в процессе плавки
1. Температура плавления шлаков
|
Температура плавления шлаков (шлаки имеют многокомпонентный состав и плавятся в интервале температур, т.е. имеют начало и конец плавления. Здесь и в дальнейшем имеется в виду температура конца плавления шлаков) является их основной физической характеристикой, определяющей другие важные физико-химические свойства. Это связано с тем, что в любом сталеплавильном агрегате в каждый период плавки температура металла и шлака изменяется в узких пределах, поэтому перегрев шлаков выше температуры плавления в основном определяется температурой плавления. Степень перегрева шлака определяет поведение шлака, его физические свойства (вязкость, электрическую проводимость) и химическую активность (рафинирующее действие на металл, поглощение газов из газовой фазы и т.д.). На температуру плавления шлака может влиять любой его компонент. Однако, как показывают исследования, для обычных окислительных шлаков первостепенное значение имеет изменение содержания SiO2 (см. рисунок 1).
Наиболее легкоплавкие шлаки (tпл = 1200-1300°С) содержат 30-40% SiO2. Как снижение, так и увеличение содержания SiO2 в шлаке выше указанных пределов приводит к повышению температуры плавления.
Содержание SiO2 равное 30-40%, обычно наблюдается в начале плавки как в основных, так и в кислых процессах. По ходу плавки в основных процессах содержание SiO2 снижается, а в кислых процессах повышается, поэтому температура плавления шлаков по ходу плавки обычно повышается.
Обычно для разжижения основных шлаков используют добавки боксита (основные составляющие Al2O3, SiO2, Fе2О3), плавикового шпата (CaF2), боя шамотного кирпича (SiO2, Al2O3), в некоторых случаях песка (SiO2).
2. Вязкость шлаков
Вязкость шлака является важнейшим из свойств. Повышенная вязкость шлака затрудняет тепло- и массоперенос в шлаке, вызывает замедление всех процессов нагрева и рафинирования металла, приводит к излишнему угару раскисляющих и легирующих присадок, уменьшает выход годной стали. Вязкость шлака зависит от его температуры и состава.
Зависимость вязкости шлаков периода плавления в основной мартеновской печи от температуры приведена на рисунке 2, из которого видно, что в области умеренно низких температур начала плавки (вблизи температуры плавления) вязкость шлаков высока и возрастает при увеличении их основности. Значения вязкости нормальных шлаков по ходу плавки обычно находятся в пределах 0,1-0,3.
|
Компонентами шлака, резко повышающими его вязкость, прежде всего являются МgО (> 10-12%) и Сг2О3 (>5-6%); эти компоненты при содержаниях выше указанных пределов обогащают шлак мелкодисперсными частицами.
Вязкость основных шлаков существенно снижается при введении 2-5% CaF2 5-7% Al2O3, 5-7% Na2O или К2О.
3. Вспенивание шлака
Вспенивание шлака вызывают мелкие пузыри СО, образующиеся в результате окисления углерода металла и остающиеся в шлаке ввиду того, что архимедова (подъемная) сила из-за большой удельной поверхности оказывается недостаточной для преодоления сопротивления (силы трения) шлакового расплава.
Некоторое, не чрезмерное вспенивание шлака в кислородных конвертерах с верхней подачей дутья играет положительную роль - повышается и стабилизируется усвоение кислорода ванной, создаются препятствия выпуску из конвертера капель металла и поглощению азота из подсасываемого через горловину воздуха. Чрезмерное вспенивание приводит к выбросам значительных объемов шлака из любого агрегата, что недопустимо. В мартеновских печах даже умеренное вспенивание, не приводящее к выбросам шлака, нежелательно, поскольку пенистый шлак, обладая низкой теплопроводностью, ухудшает теплопередачу от факела к металлу, что вызывает удлинение плавки и повышение износа футеровки, особенно свода печи, поскольку значительная часть неусвоенного металлом тепла поглощается футеровкой, а это приводит к ее перегреву.
Причиной чрезмерного вспенивания шлака могут быть повышенное содержание в шлаке SiO2 и Р2О5 образующие поверхностно-активные анионы SiO44- и РО43-, которые повышают устойчивость пены. Аналогичное действие оказывает наличие в шлаке очень мелких твердых частиц, которые повышают механическую прочность шлаковых пленок (служат "каркасом").
Для снижения склонности шлака к чрезмерному вспениванию из-за наличия в нем очень мелких твердых частиц необходимо повышение температуры, которое обеспечивает растворение твердых частиц в шлаке. Если же чрезмерное вспенивание вызывается повышенным содержанием в шлаке SiO2 и Р2О5, то необходимо повысить основность шлака присадкой в ванну извести, еще лучше присадка CaF2, и оксидов щелочных металлов.
Общие принципы установления оптимального шлакового режима плавки
Основными параметрами, определяющими шлаковый режим плавки, являются основность и количество шлака. Оптимальный шлаковый режим достигается одновременным изменением и химического состава (основности), и количества шлака. Если по условиям ведения плавки (высокое качество исходного сырья, умеренные требования к качеству стали и т.п.) нет необходимости в специальных мерах для удаления из металла серы или фосфора, то основность шлака должна обеспечивать предотвращение чрезмерного разрушающего действия шлака на футеровку агрегата. Для выполнения этого требования достаточно иметь основность конечного шлака 2,2-2,4. Если по ходу плавки требуется принятие специальных мер для удаления серы и фосфора, то основность шлака должна обеспечивать максимальное поглощение шлаком этих примесей. Этому требованию соответствуют конечные шлаки с основностью 2,7-3,3 в мартеновском процессе и 3,0—4,0 в кислородно-конвертерном процессе.
Если за счет повышения основности шлака не удается провести рафинирование металла, прибегают к увеличению его количества, путем «скачивания» отработанного шлака и «наведения» нового шлака. Поскольку наведение дополнительного шлака удлиняет плавку и ведет к дополнительным потерям металла, стараются вести процесс в одношлаковом режиме.
Основные реакции сталеплавильных процессов
Поскольку сталь получают обычно из чугуна и лома в результате окисления и удаления содержащихся в них примесей (кремния, марганца, фосфора и др.), особое значение в сталеплавильной практике имеют реакции окисления. Кислород для протекания этих реакций поступает или из атмосферы, или из железной руды, или из других окислителей, или при продувке ванны газообразным кислородом.
Окисление углерода
Углерод в стали - это ее самая распространенная полезная примесь. Содержание углерода как полезной примеси в стали обычно изменяется от 0,05-0,10 до 1,0-1,2%.
Углерод в твердом железе способен образовать пересыщенный раствор, т.е. оставаться в растворе в количествах, значительно превышающих растворимость. В результате атомы углерода занимают некоторые узлы в кристаллической решетке железа (феррита), что вызывает ее искажение и приводит к возникновению в ней напряжений, способствующих повышению прочности и твердости железа.
Углерод, содержащийся в исходной металлошихте, в основном в чугуне, оказывает решающее положительное влияние на ход и результаты окислительного рафинирования металла в любом агрегате. Это связано прежде всего с тем, что в течение всего этого периода углерод окисляется.
Во-первых, при окислении углерода выделяются газы СО и СО2. Это газовыделение обеспечивает интенсивное перемешивание ванны (металла и шлака), без которого сталеплавильные процессы в существующих вариантах нереализуемы. Кроме того, пузыри СО, проходя через жидкий металл, способствуют удалению из него газов и неметаллических включений.
Во-вторых, процесс окисления углерода газообразным кислородом протекает с выделением тепла, которое используется для нагрева ванны.
В-третьих, реакция окисления углерода [C]+(FeO)={CO}+[Fe] защищает железо от чрезмерного окисления во время его окислительного рафинирования, т.е. способствует уменьшению неизбежных потерь железа из-за его окисления.
В-четвертых, содержание углерода в металле и непрерывное его окисление являются основными факторами, определяющими содержание кислорода в металле, от которого зависит содержание оксидных неметаллических включений в готовой стали, т.е. ее качество.
Поведение углерода
Окисление углерода в сталеплавильных процессах в основном (на 85-90 %) протекает до {СО}. Сопутствующая ей реакция окисления углерода с образованием СО2 имеет второстепенное значение. Содержание CO2 не превышает 10-15 %.
Возможные реакции окисления углерода, растворенного в металле:
- [С] + 1/2О2 = СОгаз; ΔG° = -152570 - 33,8Т; - идет с выделением тепла.
- [С ] + (FeO) = Fe + СОгаз; ΔG° = +85 373 – 83,8Т; - протекает с поглощением тепла.
- [С] + [О] = СОгаз; ΔG° = —35 630—31 Т; - с выделением тепла.
Если проанализировать изменение величины ΔG° при изменении температуры, то окажется, что во всех случаях значение ΔG° с повышением температуры уменьшается, т. е. ее повышение благоприятствует протеканию реакции окисления углерода.
Константа равновесия реакции [С] + [О] = {СО} в общем случае определяется выражением Кс = Pco/(a[c]a[o]). При концентрациях углерода до 1%, а кислорода до 0,08% коэффициенты их активности примерно равны единице, поэтому Кс=Рсо/([С]·[О]).
Поскольку значение теплового эффекта реакции мало, им можно пренебречь. Тогда для любой температуры Рсо/([C]-[О])=const.
В конце сталеплавильного процесса при температуре 1600 0С для открытых агрегатов (Рсо= 1 кг/см2), можно считать, что Кс = 402, тогда
[C]∙[О]=Рсо/Кс=Рсо/402=0,0025Рсо=0,0025.
Это означает, что в рассматриваемых условиях равновесное остаточное содержание углерода в металле зависит только от концентрации кислорода, причем чтобы получить [С]min, необходимо обеспечить [О]max.
Теоретически возможное максимальное содержание кислорода (см. рисунок 3) при температурах конца сталеплавильных процессов [О]= 0,20-0,25%. Приняв среднее значение [О]= 0,23% и подставив его в уравнение, получим [С]min= 0,0025/0,23 = 0,01%, т. е. в открытом сталеплавильном агрегате невозможно получить содержание углерода < 0,01%.
В реальной сталеплавильной ванне в конце плавки очень трудно получить шлак, содержащий > 50% оксидов железа, поэтому максимальное содержание кислорода в металле составляет 0,10-0,12% и минимальное остаточное содержание углерода не бывает меньше 0,02%. Получение такого низкого содержания углерода в металле является нежелательным, так как приводит к резкому снижению выхода годного ввиду чрезмерного окисления железа и повышенному износу футеровки агрегата.
|
В современной практике производство стали с содержанием < 0,02% С получает большое развитие. В этих случаях в открытых агрегатах обычно достигают остаточного содержания углерода 0,025-0,040%. Дальнейшее снижение содержания углерода в металле достигают обработкой жидкой стали вакуумом и нейтральным газом.
Общие принципы достижения заданного содержания углерода в готовой стали.
1 Неизбежное непрерывное окисление этой примеси в течение всего периода окислительного рафинирования.
2 Для достижения заданного содержания углерода в готовом металле необходимо иметь определенный запас углерода в исходной шихте (превышение исходного содержания над конечным) и рационально расходовать этот запас в период окислительного рафинирования.
3 Плавка должна быть проведена так, чтобы имеющийся запас углерода был израсходован точно в течение того времени, которое требуется для решения других задач, кроме окисления углерода: нагрева, дефосфорации и десульфурации металла и т.п.
Основы синхронизации процессов обезуглероживания и нагрева металла
При управлении плавкой важно не просто окисление углерода и получение заданного содержания его в конечном металле, но и проведение этого процесса синхронно с процессом нагрева ванны.
В идеальных условиях, когда ванна не обменивается теплом с окружающей средой и в ней не протекают никакие другие процессы, кроме окисления углерода, относительное изменение температуры ванны при окислении углерода Δt[c] можно определить по формуле
Δt[c] =Qt/(100×Cм+gшл×Cшл),
где Qt - тепловой эффект реакции окисления углерода при данных условиях, кДж/кг;
gшл - количество шлака, кг/100кг металла;
С - удельные теплоемкости металла и шлака, Дж/(кг К).
Поскольку См=0,84 кДж/(кг-К) и Сшл= 2,09 кДж/(кг-К), а количество шлака обычно составляет 10-15%, то уравнение примет вид: Δt[c] =0,009Qt.
Это означает, что синхронизация процессов обезуглероживания и нагрева металла в идеальных условиях возможна лишь изменением теплового эффекта реакции окисления углерода.
Величина и знак теплового эффекта процесса окисления углерода могут изменяться в зависимости от источника кислорода. Основными источниками кислорода для окисления углерода являются: холодное дутье (кислородное или воздушное), оксиды железа твердых окислителей (железной руды, агломерата, окатышей, окалины и т.п.), горячие печные газы:
Qt, кДж/кг [С] Δt[c] ,°C/%[C]
Холодное дутье:
воздушное ....…………. +4450 +40
кислородное ..... ……….+12500 +115
Нагретая атмосфера печи . . . 15000 +135
Холодный твердый окислитель –20000 -180
Окисление углерода газообразным кислородом дутья или печных газов происходит с выделением тепла, при этом чем выше температура нагрева кислорода, тем больше тепловой эффект реакции. Окисление углерода кислородом твердых окислителей является резко эндотермическим процессом
В реальных сталеплавильных процессах величина Δt[c] существенно может отличаться от приведенных выше значений Δt[c] no ряду причин: происходит потеря тепла в окружающую ванну среду (нагрев футеровки, окружающего воздуха и т.п.), возможно протекание в ванне других экзотермических и эндотермических процессов, кроме окисления углерода.
Окисление и восстановление кремния
Кремний при производстве стали используется в качестве раскислителя и легирующего элемента. Сталь, легированная кремнием, обладает более высокими значениями предела текучести, упругости, ударного сопротивления, хорошей прокаливаемостью, жароупорностью, способностью в закаленном состоянии сохранять твердость при относительно высоких температурах и др.
Кремний, содержащийся в металлической шихте, во время плавки окисляется и теряется практически полностью. На ход плавки наличие кремния в шихте как правило, влияет положительно:
1. Это выражается в улучшении теплового баланса плавки, поскольку среди обычных примесей металлической шихты кремний окисляется с выделением наибольшего количества тепла.
2. Кремнезем, получающийся в результате окисления кремния в ванне, активнее вносимого в готовом виде и ускоряет процесс формирования шлака.
Однако кремнезем, образующийся при окислении кремния металла, оказывает разрушающее действие на основную футеровку. Кроме того, при очень высоком содержании кремния образуется большое количество шлака, которое не всегда является желательным, поэтому обычно устанавливаются пределы содержания кремния в чугуне.
Кремний является обязательной примесью чугуна и в том или ином количестве содержится в ломе. Обычно содержание кремния в металлической шихте довольно высокое (0,5-1,0%).
Растворенный в металле кремний может окисляться кислородом:
а) содержащимся в газовой фазе [Si ] + О2 газ = (SiO2); ΔG = -775670 + 198Т, Дж/моль;
б) содержащимся в окислах железа шлака [Si] + 2 (FeO) == (SiO2) + 2Fe; ΔG° = -300 000+98Т;
в) растворенным в металле [Si] + 2 [О] = SiO2; ΔG° == -541 840 + 203Т.
Все эти реакции сопровождаются выделением очень большого количества тепла. Знак «плюс» перед энтропийными членами в уравнениях свободной энергии свидетельствует о том, что при повышении температуры могут создаваться благоприятные условия для восстановления кремния.
Полнота протекания реакции окисления кремния зависит от типа процесса, точнее, характера шлака, под которым проводится плавка.
В основных процессах кремнезем образует в шлаке прочные соединения: в начале плавки силикаты железа 2FeO∙SiO2 и кальция CaO∙SiO2, в дальнейшем двухкальцевый силикат кальция 2CaO∙SiO2 по реакции (SiO2) + 2(СаО) = 2СаО∙SiO2. Благодаря протеканию этой реакции активность SiO2 в шлаке становится очень низкой даже при высокой его концентрации и кремний в основных процессах окисляется практически полностью еще в начале плавки, а по ходу плавки не восстанавливается, независимо от присутствия углерода и других обычных примесей чугуна и изменения температуры ванны.
В кислых процессах активность SiO2 в шлаке во много раз выше, чем в основных процессах, поэтому с повышением температуры ванны к концу плавки происходит восстановление кремния из шлака по реакции
[Si] + 2 (FeO) == (SiO2) + 2Fe,
в результате чегоостаточное содержание кремния в металле может достигать 0,3-0,4 %. Восстановителем кремния в кислых процессах может также являться углерод.
Обеспечение заданного содержания кремния в готовой стали
Как было показано выше, в основных процессах, имеющих в настоящее время решающее значение в производстве стали, остаточное содержание кремния в металле в конце окислительного рафинирования ничтожно мало (следы), поэтому кремний как полезная примесь в необходимом количестве вводится в металл после окончания окислительного рафинирования. Для этой цели обычно используют различные железокремнистые сплавы, называемые ферросилицием
Окисление и восстановление марганца
Марганец в сталеплавильных процессах может образовывать различные химические соединения: наиболее важными из которых являются MnO, MnS и Мn3С. Марганец в готовой стали в большинстве случаев является полезной примесью, служащей для раскисления и легирования.
Марганец как раскислитель в количестве 0,25-0,50% содержится в кипящей, полуспокойной и спокойной углеродистой стали.
Основное положительное влияние марганца на свойства стали состоит в уменьшении вредного влияния серы за счет связывания ее в сульфид MnS, который при кристаллизации металла выделяется в виде твердых, случайно расположенных включений, приносящих во много раз меньше вреда, чем FeS. Для выделения серы в виде менее вредных твердых включений необходимо иметь в стали следующее отношение содержания марганца и серы: [Mn]/[S]≥20-22.
Марганец как легирующий элемент.
Марганец резко уменьшает критическую скорость закалки, поэтому марганцовистая сталь прокаливается значительно глубже, чем простая углеродистая. Растворяясь в феррите, марганец повышает прочность стали, но несколько снижает пластичность стали (относительное удлинение и ударную вязкость). Марганец также повышает износостойкость и упругость стали.
Поведение марганца в сталеплавильных ваннах
Марганец вносится в сталеплавильную ванну в основном с чугуном и ломом. В зависимости от содержания марганца в чугуне и ломе и их соотношения содержание марганца в исходной шихте изменяется в широких пределах: от 0,3-0,5 до 1,0-1,5% и более.
Марганец, растворенный в металле, окисляется кислородом;
а) содержащимся в газовой фазе:[Mn] + О2 газ = (МпО); ΔG° = -361 380 + 106Т;
б) содержащимся в окислах железа шлака: [Мп] + (FeO) = (МпО) + Fe; ΔG° = —124 000 + 56,4Т;
в) растворенным в металле: [Мп] + [О] = (МпО); ΔG° = -245 000 + 109Т;
Возрастание величины ΔG° по мере повышения температуры свидетельствует о возможности протекания при высоких температурах - обратного процесса — восстановления марганца из оксида железом: (МnО) + Fe = [Мn] + (FeO), а также углеродом и кремнием: (МnО) + [C] = [Мn] + СОгаз; 2 (МnО) + [Si] = 2 [Mn] + SiO2.
Полнота протекания реакции окисления марганца зависит от характера шлака, под которым проводится плавка, окисленности шлака, и температурного уровня процессса.
В начале плавки марганец интенсивно окисляется до достижения равновесия реакции
(МnО) + Fe = [Мn] + (FeO)
После достижения равновесия содержание марганца в металле по ходу процесса может оставаться неизменным при постоянстве внешних условий или изменяться в сторону увеличения или уменьшения в зависимости от характера изменения внешних условий - температуры, окисленности ванны, количества шлака и т.п.
В конце плавки возможны следующая динамика содержания марганца в металле:
1. при [С]>0,2-0,3% за счет повышения температуры при низкой окисленности шлака концентрация марганца в металле в конце плавки повышается.
2. при [С]< 0,05-0,07%), вследствие резкого повышения содержания FeO в шлаке концентрация марганца в металле снижается (несмотря на дополнительное повышение температуры).
На остаточное содержание марганца в металле влияет основность шлака: более глубокое окисление марганца в кислых процессах, чем в основных, объясняется тем, что МnО, обладая основными свойствами, в кислых шлаках в значительной степени взаимодействует с SiО2 например, по реакции 2(MnO) + (SiO2) = (MnO)2-SiO2. Это приводит к снижению активности МnО в шлаке и смещению реакции вправо.
К концу плавки ввиду повышения температуры (1580-1620°С и более) и снижения содержания FeO в шлаке (8-12% при концентрации углерода в металле не менее 0,15-0,20%) значения Lmn снижаются до 10-20 и в металле остается 20-35 % марганца. Однако при выплавке стали с 0,05-0,07% С содержание FeO в шлаке в конце плавки снова повышается до 15-20% и более, что приводит к увеличению Lmn до 25-35 и выше и снижению остаточного содержания марганца до 15-20 %.
Обеспечение заданного содержания марганца в готовой стали
В большинстве случаев остаточное содержание марганца бывает значительно меньше заданного. Заданное содержание марганца в готовой стали обеспечивается введением его в металл в виде того или иного металлического марганецсодержащего материала (ферромарганца, силикомарганца, металлического марганца и др.) в ковш при выпуске.
Окисление и восстановление фосфора
В рудах фосфор всегда сопутствует железу, часто в больших количествах. В процессе восстановительной плавки рудного материала весь фосфор шихты переходит в чугун. Минимальное содержание фосфора в чугуне составляет 0,1-0,2%, максимальное 2-2,5%.
Повышенное содержание фосфора снижает пластичность металла (особенно ударную вязкость), также ухудшает прочность (предел прочности), пластичность и свариваемость нагретого металла.
В подавляющем большинстве случаев фосфор является вредной примесью стали, его содержание в металле особо ответственного назначения должно составлять не более 0,005-0,010%.
В шихту сталеплавильных печей фосфор попадает в основном из чугуна. Некоторое количество фосфора может попасть в шихту из лома, а также из ферросплавов.
Растворенный в металле фосфор может окисляться кислородом:
а) содержащимся в газовой фазе: 4/5[P ] + О2 раз = 2/5 (P2O5); ΔG0 = -619 280 + 175Т;
б) содержащимся в окислах железа шлака: 4/5 [Р] + 2 [FeO] = 2/5(P2O5)+ 2Fe; ΔG0= -143 050 + 66Т;
в) растворенным в металле: 4/5 [Р] + 2 [O] == 2/5 (P2O5) ΔG° = -385 220 + 170Т.
Знак «плюс» перед энтропийными членами в уравнениях свободной энергии свидетельствует о том, что при повышении температуры могут создаться благоприятные условия для восстановления фосфора.
Одной из основных реакций дефосфорации металла в сталеплавильных процессах является образование пентаоксида фосфора главным образом по реакции: 2[Р] + 5(FeO) = (P2O5) + 5[Fe]. Однако P2O5 термически неустойчив и при температурах сталеплавильных ванн в свободном состоянии существовать не может. Для успешной дефосфорации металла дополнительно необходимо образование прочных фосфатов в шлаке.
В кислых шлаках вследствие избытка SiO2 образование фосфатов получает ограниченное развитие и в результате оказывается, что при работе под такими шлаками фосфор, перешедший в шлак при относительно низких температурах, при повышении температуры восстанавливается и при обычных температурах сталеварения (>1500°С) практически весь переходит обратно в металл. Коэффициент распределения фосфора между кислым шлаком и металлом Lp = (Р)/[Р] составляет всего 1-3, поэтому на практике считают, что в этих процессах удаления фосфора из металла не происходит.
В основных шлаках при низких температурах начала плавки могут образоваться трифосфаты железа в основном по реакции
(P2O5) + 3(FeO) = (3FeO. P2O5)
Однако при высоких температурах фосфаты железа непрочны и фосфор может перейти обратно в металл. Для того, чтобы удалить фосфор из металла и удержать его в шлаке, необходимо снижать активность P2O5 в шлаке. Этого достигают при наведении основного шлака с помощью добавок извести (или известняка). При этом основная составляющая извести—СаО реагирует с P2O5, образуя фосфаты кальция (СаО)n-(P2O5), который по сравнению с другими фосфатами кальция имеет наибольшую устойчивость и температуру плавления. Поэтому на конечных стадиях плавки дополнительным условием обеспечения процесса дефосфорации металла является протекание реакции (P2O5) + 3(СаО) = (3СаО∙P2O5).
Комбинируя последнее уравнение с уравнением реакции образования P2O5, получим уравнение суммарной реакции дефосфорации металла в конце основного процесса:
2[Р] + 5(FeO) +3(СаО) = (3СаО. P2O5) + 5[Fe] + Q.
Таким образом, можно сформулировать основные условия, соблюдение которых позволяет удалять фосфор из металла:
1). наведение шлака высокой основности: для мартеновского процесса в пределах 2,5-2,8, а для кислородно-конвертерного процесса с верхней подачей дутья 3,0-3,5.
2). высокая окисленность шлака. Это связано с тем, что, во-первых, FeO принимает прямое участие в процессе дефосфорации (2[Р] + 5(FeO) = (P2O5) + 5[Fe]); во-вторых, FeO ускоряет растворение извести в шлаке, т. е. облегчает получение гомогенного шлака.
3) наличия шлаков, содержащих мало фосфора, для чего при переделе фосфористых чугунов проводят смены (скачивания) шлака;
4) невысокая температура. Прямое влияние температуры связано со знаком теплового эффекта реакции.
Удаление серы (десульфурация металла)
Сера является самой вредной примесью, снижающей механическую прочность и свариваемость стали, а также ухудшающей ее электротехнические, антикоррозионные и другие свойства.
Во время кристаллизации и при дальнейшем охлаждении металла весь избыток серы выше указанных пределов выделяется в виде сульфида железа FeS совместно с FeO. Чистый сульфид железа имеет температуру плавления 1190°С, а оксисуль-фидный расплав имеет эвтектику с температурой затвердевания ~985°С, т. е. значительно ниже температуры плавления металла (обычно ~1500°С). Это при кристаллизации металла приводит к выделению сульфида и оксисульфида железа в жидком виде. Выделяющиеся неметаллические включения располагаются по границам зерен в виде тонких пленок. Образование таких пленок резко снижает прочность металла при температурах (>1000°С), поскольку они при этих температурах, находясь в жидком или размягченном состоянии, ослабляют меж-зеренную связь в металле. Это явление называют красноломкостью стали. Красноломкость вызывает: 1) образование так называемых горячих трещин на слитках, литых заготовках и изделиях (деталях); 2) появление рванин, трещин и других поверхностных дефектов на прокате; 3) плохое сваривание внутренних усадочных пустот металла во время прокатки, вследствие чего головная обрезь от слитков возрастает при повышении содержания серы.
Не меньшее отрицательное влияние сера оказывает на служебные, прежде всего на прочностные свойства стали, особенно при низких температурах < (-30°С). Следовательно, повышенное содержание серы вызывает и красноломкость, и хладноломкость стали.
Сера является химически активным элементом и образует различные соединения, устойчивые при высоких температурах сталеплавильных процессов и способные переходить и в газовую, и в шлаковую фазы.
Обмен серы между газовой фазой и жидкой ванной
В процессе плавки сера можкт окисляться кислородом по реакциям:
1) [S]+2[О]={SO2} на границе газ-металл в пузырях СО, за счет кислорода металла
2) (S) + 2(FeO) = 2[Fe] +{SO2} на границе газ-шлак в пузырях СО, находящихся в объеме шлака;
3) на границе газ-металл, с участием кислорода газовой фазы [S]+{O2} ={SO2};
4) на границе газ-шлак, над ванной (S) + {O2}={SO2}
Таким образом, пузыри СО, проходящие через толщу металла, уносят некоторое количество серы. Это количество серы тем больше, чем выше содержание серы и кислорода в металле.
Результатом протекания реакции окисления серы газообразным кислородом на границе шлак-газ является наблюдаемое на практике удаление серы из ванны в газовую фазу в количестве 5-10% от исходного содержания серы в шихте.
Основная часть серы удаляется из металла окислительным шлаком
Традиционной является схема:
- сера, находящаяся в металле в виде сульфида железа, в соответствии с законом распределения переходит в шлак, [FeS] = (FeS).
- в шлаке происходит образование более прочного и плохо растворимого в металле сульфида кальция по реакции (FeS) + (СаО) = (CaS) + (FeO).
- суммарная (общей) реакция десульфурации [FeS] + (СаО) = (CaS) + (FeO).
Из структуры последнего уравнения вытекает, что для улучшения десульфурации металла прежде всего необходимо в шлаке повышение содержания свободного СаО, которое возможно повышением основности шлака, и снижение содержания FeO, которое определяется в основном концентрацией углерода в металле.
Влияние температуры на коэффициент распределения серы может быть прямым и косвенным. Прямое влияние связано с тепловым эффектом процесса перехода серы из металла в шлак. Этот процесс является экзотермическим, поэтому при постоянстве других условий, чем выше температура, тем меньше Ls, но это влияние незначительно, так как тепловой эффект процесса небольшой: -42 кДж/моль.
Косвенное влияние температуры на Ls заключается в том, что при высокой температуре можно обеспечить повышенную основность шлака, которая способствует увеличению Ls. Чем выше температура ванны, тем лучше десульфурация металла, если повышение температуры рационально используется для получения высокоосновного гомогенного шлака. Кроме того с повышением температуры ускоряются диффузионные процессы.
Сера является поверхностно активным элементом. Высокая поверхностная активность серы приводит к тому, что на поверхности раздела фаз концентрация серы выше, чем в объеме раствора. Поэтому наибольший эффект дает применение таких методов ведения плавки, которые обеспечивают увеличение поверхности контакта металла с десульфурирующей фазой (искусственное перемешивание металла со шлаком, вдувание в металл тонкоизмельченных порошкообразных реагентов и т. п.).
Однако основные возможности улучшения десульфурации металла заложены в изменении химического состава шлака.
Кислые шлаки обладают минимальной серопоглотительной способностью и обеспечивают L = 0,5-1,5. Это незначительное поглощение серы кислым шлаком происходит не в результате образования простых анионов S2-, а вследствие того, что сера частично замещает кислород в кремнекислородных анионах:
Основные окислительные шлаки обычного химического состава (B > 2,0-2,5) обеспечивают Ls = 3-7, иногда до 10, т. е. в несколько раз выше, чем для кислых шлаков. Коэффициент распределения серы между основным окислительным шлаком и металлом в период окислительного рафинирования зависит в основном от содержания в шлаке СаО и SiO2 или упрощенно - от основности шлака. Для наведения высокоосновного шлака жидкоподвижного шлака в ванну осуществляют присадки извести (известняка) и осуществляют скачивание первичного шлака для удаления из печи кремнезема.
Влияние FeO двойственно. С одной стороны, наличие FeO в шлаке ускоряется растворение СаО и получение гомогенного высокоосновного шлака (разжижает шлак), что улучшает десульфурацию. С другой стороны наличие в шлаке FeO смещает равновесие реакции десульфурации в обратную сторону.
В целом серопоглотительная способность основных шлаков остается низкой из-за высокой окисленности сталеплавильных шлаков. В лучшем случае коэффициент распределения серы Ls= (S)/[S] в лучшем случае достигает 10, а обычно изменяется в пределах 3-7. При этом в одношлаковом режиме степень десульфурации R=[S]н/[S]к может составить 1,5-2, т. е. обеспечивает снижение содержания серы в металле в 1,5-2 раза (на 40-50 %), что в современных условиях часто бывает недостаточным.
В настоящее время в связи с повышением требований к качеству стали и разливкой ее на МНЛЗ обязательным элементом сталеплавильной технологии становится ковшевая десульфурация металла.
Таким образом, удалению серы из металла (десульфурации металла) способствуют:
1) наличие основных шлаков с высокой активностью CaO;
2) низкая окисленность металла шлака (минимум FeO);
3) низкая концентрация серы в шлаке (скачивание и наведение нового шлака);
4) перемешивание металла со шлаком и увеличение поверхности контакта;
5) повышение температуры ванны.
Конвертерное производство стали
История конвертерного производства стали
Конвертерный способ получения стали был предложен в 1855г. английским механиком Генри Бессемером. Метод заключался в переделе чугуна в сталь путем продувки жидкого чугуна воздухом, подаваемым через днище конвертера. Разработанный Бессемером агрегат для продувки чугуна, (от англ. converter — преобразователь), представлял собой вращающийся вокруг горизонтальной оси сосуд, состоящий из металлического кожуха, футерованного изнутри кислым (динасовым) огнеупорным кирпичом. В футерованное днище вставляются шамотные фурмы с отверстиями для подачи воздуха, которые называются соплами.
Наличие кислой футеровки предопределяло работу бессемеровского конвертера с кислыми шлаками, поэтому Бессемеровский процесс применялся только для передела низкофосфористых руд.
В 1878 г. англичанином Сиднеем Томасом была решена задача удаления фосфора из чугуна продувкой в конвертере с основной футеровкой, в качестве которой был использован обожженный доломит, и при наличии высокоосновного шлак. Для получения высокоосновного шлака в конвертер загружали известь. Способ переработки высокофосфористых чугунов путем продувки воздухом в конвертерах с основной футеровкой получил название томасовского, а конвертер с основной футеровкой — томасовского конвертера.
Достоинства и недостатки бессемеровского и томасовского процессов
Достоинства бессемеровского и томасовского процессов — высокая производительность, простота устройства конвертера, отсутствие необходимости применять топливо, малый расход огнеупоров и связанные с этим более низкие, чем при мартеновском и электросталеплавильном процессах капитальные затраты и расходы по переделу.
Однако обоим процессам присущ большой недостаток — повышенное содержание азота в стали (0,010—0,025 %), вызываемое тем, что азот воздушного дутья растворяется в металле. По этой причине бессемеровская и томасовская сталь обладают повышенной хрупкостью и склонностью к старению. Для получения стали с пониженным содержанием азота в 1950—65 применялись способы продувки снизу парокислородной смесью и смесью кислорода и углекислого газа, а также метод продувки дутьем, обогащенным кислородом.
В 50-х годах XX века в ряде стран Европы были разработаны и внедрены многочисленные варианты конвертерного процесса с применением кислорода. Эти процессы получили общее название кислородных конвертерных процессов.
В период с 1955 по 1975 гг. бессемеровский и томасовский процессы и их разновидности были вытеснены кислородно-конвертерными процессами с верхней и нижней подачей дутья.
Устройство кислородного конвертера с верхней продувкой
Кислородно-конвертерный процесс — это выплавка стали из жидкого чугуна с добавкой лома в конвертере с основной футеровкой и продувкой кислородом сверху через водоохлаждаемую фурму.
Кислородно-конвертерный процесс, обладает рядом преимуществ по сравнению с мартеновским и электросталеплавильным процессами:
1) более высокая производительность одного работающего сталеплавильного агрегата (часовая производительность мартеновских и электродуговых печей не превышает 100 т/ч, а у большегрузных конвертеров достигает 400—500 т/ч);
2) более низкие капитальные затраты, т. е. затраты на сооружение цеха, что объясняется простотой устройства конвертера и возможностью установки в цехе меньшего числа плавильных агрегатов;
3) меньше расходы по переделу, в число которых входит стоимость электроэнергии, топлива, огнеупоров, сменного оборудования, зарплаты и др;
4) процесс более удобен для автоматизации управления ходом плавки
Благодаря использованию для продувки чистого кислорода, кислородно-конвертерная сталь содержит азота не более, чем мартеновская и по качеству не уступает мартеновской. Тепла, которое выделяется при окислении составляющих чугуна с избытком хватает для нагрева стали до температуры выпуска и позволяет использовать до 24-28% лома в шихте.
Устройство кислородного конвертера
Кислородный конвертер представляет собой поворачивающийся на цапфах сосуд грушевидной формы, футерованный изнутри и снабженный леткой для выпуска стали и отверстием сверху для ввода в полость конвертера кислородной фурмы, отвода газов, заливки чугуна, загрузки лома и шлакообразующих и слива шлака (см. рисунок 4). Емкость существующих конвертеров составляет 10—450 т.
1 — опорный подшипник; 2 — цапфа; 3 — защитный кожух; 4 — опорное кольцо;
5 —корпус ведомого колеса; 6 — навесной электродвигатель с редуктором;
7 — ведомое зубчатое колесо; 8 — демпфер навесного электродвигателя;
9 — демпфер корпуса ведомого колеса; 10 — опорная станина
Рисунок 4 – Устройство кислородного конвертера
Форма конвертера. В конфигурации кожуха и внутреннего рабочего объема конвертера можно выделить три части: суживающуюся верхнюю часть (горловину), цилиндрическую часть и днище, которое может быть либо сферическим, либо иметь суживающуюся часть, к которой примыкает днище.
Размеры, конвертера. Они влияют на многие показатели процесса и должны, прежде всего, обеспечивать продувку без выбросов металла через горловину, поскольку выбросы уменьшают выход годной стали и требуют периодических остановок конвертера для удаления настылей металла с горловины и входной части котла-утилизатора. Размеры некоторых конвертеров приведены в таблице.
Размеры некоторых кислородных конвертеров
Емкость, т |
Высота рабочего пространства, Н, м |
Диаметр рабочего пространства, м |
Отношение H/D |
Удельный объем, м3/т |
Глубина ванны, м |
Диаметр горловины, м |
100 |
7,65 |
4,00 |
1,90 |
0,96 |
1,50 |
1,65 |
200 |
9,50 |
5,95 |
1,60 |
1,03 |
1,78 |
3,10 |
300 |
9,27 |
6,55 |
1,41 |
0,87 |
1,90 |
3,43 |
Основные параметры, определяющие возможность работы конвертера без выбросов — это удельный объем (объем рабочей полости, приходящийся на 1 т жидкой стали, м3/т) и отношение высоты рабочего объема к его диаметру, H/D.
Удельный объем должен находиться в оптимальных пределах. Если он недостаточен, то при продувке возникают выбросы вспенивающихся металла и шлака. Вместе с тем, если удельный объем чрезмерно велик, то неоправданно возрастают габариты конвертера и высота конвертерного цеха, теплоотдающая поверхность кожуха и теплопотери, расход огнеупоров на кладку футеровки.
В последние годы для проектируемых конвертеров емкостью 100—400 т с учетом сложившегося режима продувки (150— 250 м3/мин кислорода на одно сопло фурмы) величину удельного объема принимают в пределах от 0,8—0,85 до 1,0 м3/т, причем эта величина должна понижаться при росте емкости конвертера.
Выбирая величину H/D учитывают, что при ее снижении стенки конвертера отдаляются от высокотемпературной подфурменной зоны, что способствует повышению их стойкости; возрастает также площадь контакта металл-шлак, что облегчает удаление в шлак фосфора и серы. Вместе с тем при чрезмерном снижении H/D, т. е. уменьшение высоты конвертера, начинаются выбросы, поскольку вспенивающийся металл достигает низко расположен ной горловины. При росте H/D вероятность появления выбросов снижается, но и увеличение H/D сверх оптимальной величины не рекомендуется, поскольку это требует увеличения высоты здания цеха.
Для проектируемых в последние годы конвертеров емкостью 100—400 т величину H/D принимают в пределах 1,8—1,35, причем в этих пределах она обычно снижается пропорционально увеличению емкости конвертера. Это связано с тем, что для предотвращения выбросов, расстояние от уровня ванны в спокойном состоянии до верха горловины для конвертеров емкостью 100—400 т должно составлять примерно 6—8 м.
Глубина ванны жидкого металла в спокойном состоянии изменяется от 1,0 до 1,8—1,9 м, возрастая при увеличении емкости конвертера. Даже для конвертеров малой емкости (50 т) она не должна быть менее 1 м во избежание разрушения футеровки днища кислородными струями. Увеличение глубины ванны сверх 1,9 м также не рекомендуется, так как при этом из-за недостаточного проникновения вглубь ванны кислородных струй и ухудшения перемешивания ванны затрудняется плавление стального лома.
Диаметр горловины Dг существующих конвертеров емкостью от 50 до 400 т находится в пределах (0,4—0,6)D и изменяется от 1,0 до 4,1 м, обычно увеличиваясь при увеличении емкости конвертера. При выборе величины Dг учитывают, что горловина больших размеров позволяет производить завалку стального лома в один прием, что сокращает длительность плавки. Вместе с тем, при увеличении Dг возрастают теплопотери и несколько повышается содержание азота в выплавляемой стали, поскольку через большую горловину в полость конвертера подсасывается больше воздуха, азот которого растворяется в металле. Поэтому горловина не должна быть больше, чем это необходимо для загрузки шихты.
Угол наклона стенок горловины к вертикали в существующих конвертерах составляет 20—35°. На основании отечественной практики признано нецелесообразным делать угол более 25°, так как при большем уклоне ухудшается стойкость футеровки горловины.
Кожух и днище. Кожух конвертера выполняют сварным из листовой стали толщиной от 20 до 110 мм и делают его либо цельносварным, либо с отъемным днищем, которое крепится болтами или клиновыми соединениями. Горловина в большей степени, чем другие элементы кожуха подвержена воздействию высоких температур и короблению и может быть повреждена при удалении застывших выплесков металла и в процессе слива шлака. Поэтому верх горловины защищают сварным или литым шлемом, который в случае повреждения легко заменить.
Днище конвертеров обычно делают сферическим. Эта форма облегчает циркуляцию металла при верхней подаче дутья и способствует снижению износа футеровки. Широко применяются как неотъемные, так и отъемные днища. Отъемные днища могут быть приставными и вставными.
Цапфы и опорное кольцо. Конвертер цапфами опирается на роликовые опорные подшипники, закрепленные в опорных станинах. Подшипники обеспечивают возможность вращения конвертера вокруг оси цапф; при этом один подшипник фиксированный, а другой «плавающий», что дает возможность перемещения вдоль оси цапф на 15—30 мм.
Механизм поворота. Он обеспечивает вращение конвертера вокруг оси цапф на 360° со скоростью до 1 об/мин. Поворот конвертера необходим для выполнения технологических операций: заливки чугуна, завалки лома, слива стали и шлака и др.
Механизм поворота может быть односторонним (для малык конвертеров – до 100т) и двусторонним (для большегрузных конвертеров), позволяющим более равномерно распределить нагрузки при наклоне конвертера.
Механизмы поворота бывают стационарными и навесными. В последние годы применяют более совершенные навесные (закрепленные на цапфе) многодвигательные механизмы поворота.
Навесной многодвигательный привод обладает следующими преимуществами: перекос цапф не влияет на его работоспособность; при выходе из строя одного двигателя привод остается работоспособным; в 2—3 раза уменьшается масса привода; существенно уменьшается площадь, необходимая для его установки.
Футеровка. Футеровка конвертера работает в тяжелых условиях, подвергаясь воздействию высоких температур; термических напряжений, возникающих при колебаниях температуры футеровки; ударов кусков шихты при загрузке и знакопеременных нагрузок, возникающих при вращении конвертера. Она изнашивается также в результате химического взаимодействия со шлаком и размывающего действия потоков металла и шлака.
Футеровку обычно делают двухслойной. Примыкающий к кожуху арматурный слой толщиной 110—250 мм уменьшает теплопотери и защищает кожух в случае прогара рабочего слоя. Арматурный слой выполняют из магнезитового или магнезито-хромитового кирпича. Внутренний или рабочий слой изнашивается во время работы и его заменяют при ремонтах футеровки; его толщина в зависимости от емкости конвертера составляет 500—750 мм.
Для кладки рабочего слоя используют огнеупоры на основе доломита (CaO-MgO) и магнезита на связке из каменноугольной смолы.
Стойкость футеровки в зависимости от качества огнеупоров и условий работы конвертера составляет 400—900 плавок (2—5 кг на 1 т стали).
С целью повышения стойкости футеровки конвертеров применяется горячее торкретирование футеровки. Суть торкретирования сводится к нанесению с помощью торкрет-машин огнеупорной массы на изношенные участки футеровки.
Длительность торкретирования обычно не превышает 5 мин, его проводят после каждой или после нескольких плавок. Рекордная стойкость футеровки при торкретировании достигнута на одном из японских заводов — 10 110 плавок при расходе огнеупорного кирпича и торкрет-массы 0,19 и 1,38 кг/т стали соответственно.
Кислородная фурма. Кислород подают в конвертер через вертикально расположенную водоохлаждаемую фурму, которую вводят в полость конвертера через горловину строго по его оси. Давление кислорода перед фурмой составляет 1,0—1,6 МПа. Высоту фурмы над ванной можно изменять по ходу плавки; обычно она увеличивается при росте емкости конвертера и находится в пределах 0,8— 3,3 м от уровня ванны в спокойном состоянии.
Фурма выполнена из трех концентрично расположенных стальных труб и снабжена снизу медной головкой с соплами. Полости, образованные трубами, служат для подачи кислорода, подвода и отвода охлаждающей воды.
Медная головка фурмы имеет от 3 до 7 сопел типа сопла Лаваля, возрастая при увеличении расхода кислорода и емкости конвертера. Многосопловые фурмы благодаря рассредоточению кислородного потока на несколько струй обеспечивают «мягкую» продувку и минимальное количество выбросов. Кроме того, они дают возможность увеличить интенсивность подачи кислорода и сократить, благодаря этому, длительность плавки. Стойкость головок фурм составляет 50—250 плавок.
Шихтовые материалы и требования к ним
Основным шихтовым материалом кислородно-конвертерного процесса является жидкий чугун. Состав чугунов, перерабатываемых на разных заводах изменяется в широких пределах: 3,7—4,6 % С; 0,4—2,6 % Mn; 0,3—2,0 % Si; 0,02—0,08 % S; <0,3 % P.
Оптимальное содержание кремния в чугуне [Si]опт = 0,6—0,9 %. При излишне высоком содержании кремния возрастает расход извести для ошлакования образующейся SiO2 и увеличивается количество шлака в конвертере, что ведет к росту потерь железа со шлаком и способствует появлению выбросов; понижается также стойкость футеровки конвертера. Вместе с тем при очень низком (<0,3 %) содержании кремния замедляется шлакообразование в связи с медленным растворением извести из-за слишком низкого содержания SiO2, в первичных шлаках, а также снижается приход тепла.
Содержание марганца в чугунах, используемых на большинстве отечественных заводов, находится в пределах 0,2—1,1 %. Наличие в первичных шлаках закиси марганца ускоряет растворение извести, ускоряет шлакообразование, что улучшает дефорсфорацию и десульфурацию, а также уменьшает количество выбросов и повышает стойкость футеровки. Кроме того, наличие MnO снижает поверхностное натяжение шлака, который изолирует металл от воздействия атмосферы (азот). Поэтому для конвертерного передела желательно иметь содержание марганца в чугуне не менее 0,8%.
Содержание фосфора в чугуне не должно превышать 0,2—0,3 %, поскольку при большем его содержании необходимо осуществлять промежуточный слив шлака во время продувки и наведение нового, что снижает производительность конвертера.
Поскольку десульфурация металла при плавке в кислородном конвертере протекает недостаточно полно, чугун должен содержать менее 0,03—0,04 % серы.
Температура жидкого чугуна, перерабатываемого в кислородных конвертерах обычно составляет 1300—1450 °С. Применять чугун с более низкой температурой нежелательно, так как это ведет к холодному началу продувки и замедлению шлакообразования.
Количество стального лома доходит до 25—27 % от массы шихты. К лому, как и при прочих сталеплавильных процессах, предъявляется требование о недопустимости высокого содержания фосфора, серы, примесей цветных металлов и ржавчины. Кроме того, ограничивают максимальный размер кусков лома, поскольку слишком большие куски могут не успевать раствориться в металле за время продувки, а во время загрузки могут повредить футеровку конвертера. Для конвертеров емкостью 100—350 т размер кусков лома не должен быть более 0,3х0,3х1,0 м, а пакетов лома не более 0,7х1х2 м.
Основные шлакообразующие материалы — это известь и плавиковый шпат, иногда в качестве шлакообразующих или охладителей используют также железную руду, прокатную окалину, боксит, агломерат, рудно-известковые окатыши.
Известь должна быть свежеобожженной и содержать >90 % СаО, <3 % SiO2 и <0,05—0,1 % S. Куски извести должны иметь размеры от 10 до 50 мм. Применение более мелких кусков извести не допускается, так как они будут вынесены из конвертера отходящими газами.
Плавиковый шпат — эффективный разжижитель шлака. Он содержит 75—92 % CaF2, основной примесью является SiO2. Железная руда, агломерат и окатыши должны содержать не более 8 % SiO2, размер кусков руды должен быть 20—50 мм.
Боксит содержит 37—50 % А2О3, 10—20 % SiO2 и 12—25 % Fe2O3; обычно в нем также много влаги (10—20 %), что требует предварительной просушки во избежание внесения в сталь водорода.
Технология кислородно-конвертерной плавки
Наиболее простым и самым распространенным вариантом конвертерных процессов является проведение плавки в одношлаковом (моношлаковом) режиме. В этом случае технологический цикл обычно состоит из нескольких операций, продолжительность которых приведена ниже, мин:
Завалка лома |
3-4 |
Заливка чугуна |
3-4 |
Продувка |
10-25 |
Взятие пробы, ожидание анализа |
3-4 |
Слив (выпуск) металла |
5-10 |
Слив шлака |
1-2 |
Осмотр и подготовка конвертера к очередной плавке, в т. ч. торкретирование |
0-5 |
Общая длительность цикла (плавки) |
25-50 |
Продолжительность отдельных операций и цикла (плавки), как правило, не зависит от вместимости конвертера. Это объясняется тем, что по мере повышения вместимости конвертера повышается интенсивность дутья (3-7 м3/т-мин) и совершенствуется оборудование, позволяющее уменьшить продолжительность таких операций, как завалка лома, заливка чугуна и т.д.
Перед началом каждой плавки осуществляют ее шихтовку (планирование), то есть определяют оптимальные для данных условий количества (расходы) чугуна, лома, шлакообразующих материалов и кислорода, обеспечивающие по окончании продувки получение металла с заданной массой, температурой и концентрацией углерода, фосфора и серы.
Ход плавки. Плавку начинают с загрузки в конвертер лома. Завалка лома осуществляется в наклонном положении конвертера при помощи совков, объем которых принимают такими, чтобы весь лом был подан в одном совке, т. е. загрузку осуществить в один прием. Равномерное распределение лома на днище достигается наклоном конвертера в противоположную от загрузки сторону. Затем из заливочного ковша через горловину наклоненного конвертера заливают жидкий чугун. Заливка чугуна в требуемом количестве, известного химического состава и температуры осуществляется в один прием при помощи чугуновозных ковшей соответствующей вместимости.
После заливки чугуна конвертер поворачивают в вертикальное рабочее положение. В полость конвертера вводят фурму, включая подачу кислорода – период продувки. Затем загружают первую порцию шлакообразующих (известь с плавиковым шпатом и иногда с добавкой руды, окалины, окатышей, боксита). В первую порцию входит. 1/2—2/3 шлакообразующих, оставшееся количество вводят несколькими порциями в течение первой трети длительности продувки. Эти материалы вводят порциями 1% массы металла, чтобы не вызвать переохлаждения ванны и нарушения нормального хода плавки. Часть извести (20-40%) иногда вводят до заливки чугуна.
За счет вводимого кислорода окисляются избыточный углерод, а также кремний, марганец и небольшое количество железа, причем окисление кремния и марганца заканчивается в первые 3—4 мин продувки.
Из образующихся окислов (исключая СО) и загружаемой в конвертер извести и других сыпучих формируется шлак. Основность его по мере растворения извести увеличивается и к концу продувки составляет 2,5—3,7. В течение всей продувки в шлак из металла удаляются фосфор и сера.
Образующиеся при окислении углерода пузырьки СО вспенивают металл и шлак и существенно усиливают циркуляцию шлака и металла, что ускоряет процессы окисления, дефосфорации, десульфурации, нагрева металла и др. Вместе с пузырьками окиси углерода из металла удаляются растворенные в нем вредные газы — водород и азот.
Выделяющееся при реакциях окисления тепло обеспечивает нагрев металла до требуемой перед выпуском температуры и расплавление стального лома. Плавление лома обычно заканчивается в течение первых 2/3 длительности продувки.
Газообразные продукты окисления углерода (СО и немного СО2) покидают конвертер через горловину, образуя высокотемпературный поток отходящих газов, в котором содержится много (до 250 г/м3) мелкодисперсных частиц Fе2О3. Наличие в отходящих газах большого количества оксидов железа связано с интенсивным испарением железа и его оксидов (дымовыделение). С отходящими газами выносятся также мелкие капели металла и шлака, мелкие частицы сыпучих материалов, а также возможны выбросы (выливания через горловину) металла и шлака.
Для очистки конвертерного газа от пыли 50-200 г/м3 каждый конвертер оборудуется сложной системой охлаждения и очистки отходящих газов с фильтрами "мокрого" или "сухого" типов.
Продувка в зависимости от интенсивности подачи кислорода (3-7 м3/т мин) и удельного расхода кислорода на процесс 45-55 м3/т продолжается от 10 до 25 мин и должна быть закончена на заданном для выплавляемой марки стали содержании углерода. К этому моменту металл должен быть нагрет до необходимой температуры (1600—1650 °С), а содержание серы и фосфора в нем не должно превышать допустимых для данной марки стали пределов.
Окончив продувку из полости конвертера выводят кислородную фурму и осуществляют отбор пробы металла и шлака на химический анализ, а также измерение температуры металла. При отклонении от заданного состава или температуры металла осуществляют операции по исправлению плавки:
а) при избыточном содержании углерода проводится кратковременная додувка, обеспечивающая получение заданного содержания углерода.
б) при излишне высокой температуре проводят охлаждение металла, вводя в него охладители и делая выдержку после их ввода в течение 3—4 мин.
в) при недостаточной температуре металла проводят додувку при повышенном положении фурмы или же вводят в конвертер ферромарганец или снликомарганец с последующей додувкой;
г) при недостаточном содержании углерода производят науглероживание металла присадками молотого кокса или графита на струю металла при его выпуске в ковш.
После любой корректировки, проведенной в конвертере, снова отбирают пробы металла и шлака, измеряют температуру.
После выполнения необходимых операций по исправлению плавки конвертер наклоняют, осуществляя выпуск стали в ковш через летку. Выпуск металла совмещается с его раскислением-легированием (присадкой ферросплавов и алюминия в ковш), поэтому продолжительность этой операции должна быть достаточной для полного расплавления и равномерного распределения в объеме металла вводимых присадок. Она зависит от вместимости конвертера, но не должна быть < 5 мин. Конвертерный шлак отсекают, забрасывая специальные шары внутрь конвертера в конце выпуска или подавая инертный газ в сталевыпускное отверстие снаружи.
Слив шлака осуществляют в шлаковую чашу через горловину конвертера, повернув его в противоположную от выпуска металла сторону (рис. 65д).
Осмотр и подготовка конвертера к очередной плавке сводятся к осмотру и восстановлению футеровки, устранению обнаруженных повреждений. К обычным повреждениям относятся неизбежный износ (более или менее равномерное разрушение) футеровки и образование настылей, в первую очередь на горловине. Неизбежный износ футеровки восстанавливают торкретированием.
Общая длительность плавки в конвертерах емкостью от 50 до 400 т составляет 30—55 мин.
Дутьевой режим плавки
Режим подачи кислорода в конвертерную ванну оказывает большое влияние на длительность продувки, ход шлакообразования, величину входа жидкой стали и ее качество, на стойкость футеровки конвертера.
Дутьевой режим плавки можно считать оптимальным, если обеспечивается выполнение следующих основных требований: 1) высокая скорость удаления примесей металла (окисления углерода) при наиболее полном и примерно постоянном усвоении кислорода; 2) быстрое шлакообразование; 3) отсутствие выбросов металла и шлака; 4) минимальное образование выносов и дыма; 5) минимальное содержание газов в конечном металле. Выполнение этих требований возможно лишь при поддержании в заданных пределах основных параметров дутьевого режима, к которым относятся интенсивность подачи дутья (продувки), давление и чистота кислорода, положение (высота) фурмы над уровнем спокойной ванны и удельный расход кислорода.
Удельный расход кислорода изменяется в пределах от 47 до 57 м3/т стали, возрастая при увеличении содержания окисляющихся примесей в чугуне и снижаясь при увеличении доли стального лома в шихте, поскольку лом содержит меньше окисляющихся элементов, чем чугун.
Давление кислорода перед фурмой должно быть в определенных пределах. Выходные сопла Лаваля кислородной фурмы преобразуют энергию давления газа в кинетическую. Для достаточного заглубления кислородных струй в ванну и полного усвоения металлом кислорода необходима высокая кинетическая энергия струй, поэтому размеры сопел рассчитывают так, чтобы скорость струи на выходе из них составляла 450—500 м/с. Давление кислорода перед фурмой при этом должно быть 1,2—1,6 МПа.
Высота расположения фурмы имеет оптимальные пределы. При чрезмерно высоком расположении фурмы кислородные струи не будут внедряться в металл («поверхностный обдув») и будет низка степень усвоения кислорода; при чрезмерно низком положении («жесткая продувка») усиливается вынос капель металла отходящими газами и абразивный износ фурмы каплями металла, существенно замедляется шлакообразование и др. С учетом этого в конвертерах разной емкости фурму устанавливают на высоте, соответствующей расстоянию до уровня ванны в спокойном состоянии от 0,8 до 3,3 м. В этих пределах высота обычно возрастает при увеличении емкости конвертера и зависит также от конкретных условий работы данного конвертера.
Изменение высоты положения фурмы во время продувки обычно используют для регулирования окисленности шлака и ускорения его формирования.
Интенсивность продувки (в отличие от расхода кислорода в единицу времени, который возрастает при росте емкости конвертера и для большегрузных конвертеров достигает 2000 м3/мин), не зависит от емкости; она определяется главным образом конструкцией кислородной фурмы (числом сопел в ней) На разных заводах величина интенсивности J находится в пределах 3—5,0 и иногда доходит до 7 м3/т-мин при применении 7-ми сопловых фурм.
Интенсивность продувки J определяет длительность продувки t. Связь между величинами t и J примерно можно выразить следующим уравнением: t = Q/J, где Q — удельный расход кислорода, равный как выше отмечалось 47—57 м3/т.
Чистота кислорода оказывает большое влияние на качество стали, поскольку от нее зависит содержание в стали азота. Так, например, при использовании кислорода со степенью чистоты 98,3—98,7 % сталь содержит 0,004—0,008 % N, а при степени чистоты кислорода 99,5—0,002—0,004 % N. Для предотвращения насыщения металла азотом необходимо применять кислород c чистотой не менее 99,5 %.
Поведение составляющих чугуна при продувке
Реакции окисления. В течение продувки за счет подаваемого в конвертер кислорода окисляется избыточный углерод, а также, кремний, большая часть марганца и некоторое количество железа.
Для продувки в конвертере характерно прямое окисление железа в зоне контакта кислородной струи с металлом (в «первичной реакционной зоне») и окисление прочих составляющих металла за счет вторичных реакций на границе с первичной реакционной зоной и в остальном объеме ванны.
Соответственно окисление, например, углерода идет по следующим схемам:
Fe + 1/2О2 = FeO; Fe + 1/2О2 = FeO;
FeO = [О] +Fe; FeO = (FeO);
[C] + [О] == CO; [C] + (FeO) = CO + Fe.
Если просуммировать уравнения реакций правого или левого столбцов, то в обеих случаях получим итоговую реакцию окисления углерода: [С] + 1/2О2 = СО, которая, таким образом, отражает лишь начальное и конечное состояние процесса окисления.
Окисление кремния и марганца, так же как и углерода начинается с момента подачи кислорода (рисунок 5), причем весь кремний и большая часть марганца выгорают в первые минуты продувки. Более быстрое их окисление по сравнению с углеродом объясняется различием в химическом сродстве разных элементов к кислороду при различных температурах.
Рисунок 5 – Динамика состава металла и шлака в процессе продувки кислородом
На рисунке 6 приведена зависимость химического сродства ряда элементов к кислороду от температуры; при этом величина химического сродства тем больше, чем больше по абсолютной величине отрицательное значение ΔG.
Из рисунка 6 следует, что при температурах ниже 1450—1500 °С кремний и марганец обладают более высоким сродством к кислороду, чем углерод; при более же высоких температурах сродство углерода к кислороду превышает сродство марганца и кремния. В соответствии с этим марганец и кремний окисляются в начале продувки, когда температура в конвертере сравнительно невысока.
Окисление кремния заканчивается в первые 3—5 мин продувки и в дальнейшем по ходу плавки жидкий металл кремния не содержит. Реакция окисления кремния протекает до его полного израсходования и является необратимой, поскольку продукт окисления кислотный окисел SiO2, связывается в основном шлаке в прочное соединение 2CaO-SiO2.
|
Интенсивное окисление марганца наблюдается в начале продувки, когда при низких температурах его химическое сродство к кислороду велико; к 3—5 мин продувки окисляется около 70 % марганца, cодержащегося в чугуне. В дальнейшем поведение марганца определяется равновесием экзотермической реакции
[Мn] + (FеО) = (МnО) + Fе + 122 950 Дж/моль.
В соответствии с этой реакцией отмечаются (см. рисунок 5) следующие особенности поведения марганца: при уменьшении содержания FеО в шлаке во второй половине продувки содержание марганца в металле возрастает; в конце продувки, когда вследствие усиливающегося окисления железа содержание окислов железа в шлаке возрастает, наблюдается вторичное окисление марганца. Конечное содержание марганца в металле зависит прежде всего от его содержания в чугуне и возрастает при увеличении температуры металла в конце продувки и снижении окисленности шлака. В обычных условиях выплавки рядовых марок сталей к концу плавки в металле остается 20-30% Mn от общего содержания его в шихте.
Окисление углерода в кислородном конвертере происходит преимущественно до СО. В начале продувки (см. рисунок 5), когда интенсивно окисляются кремний и марганец, а температура ванны мала, скорость окисления углерода сравнительно невелика (0,10—0,15 %/мин). В дальнейшем, вследствие повышения сродства углерода к кислороду при росте температуры (см. рисунок 6) и уменьшения расхода кислорода на окисление марганца и кремния, скорость окисления углерода возрастает, достигая к середине продувки максимума (0,35—0,45 %/мин). В конце продувки она вновь снижается вследствие уменьшения содержания углерода в металле.
Дефосфорация — то есть удаление из металла в шлак фосфора, осуществляется по экзотермической реакции
2 [Р] + 5 (FeO) + 3 (CaO) = (ЗСаО.Р2О5) + 5Fe + 767 290 Дж/моль,
для успешного протекания которой необходимо повышенные основность и окисленность шлака и невысокая температура.
Дефосфорация начинается сразу после начала продувки (см. рисунок 6), что объясняется быстрым началом формирования основного железистого шлака в конвертере. Поскольку реакция удаления фосфора сопровождается выделением тепла, дефосфорация наиболее интенсивно протекает в первой половине продувки при сравнительно низкой температуре.
В итоге величина коэффициента распределения фосфора между шлаком и металлом (P2O5)/[P], характеризующего результат дефосфорации, изменяется от 40 до 80—100 и в этих пределах обычно тем выше, чем выше основность и окисленность шлака и чем ниже температура металла в конце продувки. Обычно при содержании фосфора в чугуне менее 0,15—0,20 % металл в конце продувки содержит 0,002—0,004 % фосфора.
Десульфурация в кислородном конвертере происходит в течение всей продувки и, главным образом, путем удаления серы из металла в шлак. Вместе с тем, часть серы (менее 10%) удаляется в виде SO2 в результате ее окисления кислородом дутья.
Как известно для успешного протекания реакции десульфурации
[FeS] + (СаО) = (CaS) + (FeO)
необходимы высокая основность шлака и низкое содержание в нем окислов железа. Конвертерный же шлак содержит значительное количество FeO (7—20 % и более), поэтому десульфурация получает ограниченное развитие. Степень десульфурации обычно составляет 30—40 %, а коэффициент распределения серы между шлаком и металлом - (S)/[S] невелик (от 2 до 10).
Шлакообразование и требования к шлаку
Параметры шлакового режима — состав, вязкость, количество шлака и скорость его формирования оказывают сильное влияние на результаты плавки.
Требования к шлаку. Шлаковый режим должен обеспечить достаточно полное удаление фосфора и серы из металла во время продувки. С этой целью основность шлака должна быть достаточно высокой (от 2,5 до 3,7), а вязкость невелика, так как в густых шлаках замедляются процессы диффузии компонентов, участвующих в реакциях дефосфорации и десульфурации.
Скорость формирования шлака. В связи с кратковременностью продувки чрезвычайно важно обеспечить как можно более раннее формирование шлака.
В кислородно-конвертерном процессе с верхней подачей дутья имеются благоприятные условия для шлакообразования (растворения извести): 1) высокая температура в шлаковой зоне ванны (до 2000°С), вызываемая взаимодействием струи кислорода с металлом; 2) интенсивное перемешивание ванны под действием струи кислорода и выделяющегося из ванны СО; 3) возможность изменения содержания оксидов железа в шлаке изменением положения кислородной фурмы относительно поверхности ванны.
Формирование основного шлака сводится к растворению загружаемой в конвертер кусковой извести в жидкой шлаковой фазе—продуктах окисления составляющих чугуна (SiO2, MnO, FeO). Известь тугоплавка (температура плавления СаО составляет 2570 °С), поэтому для ее растворения необходимо взаимодействие СаО с окислами шлаковой фазы с образованием легкоплавких химических соединений.
Для ускорения шлакообразования в конвертер в начале продувки обычно присаживают плавиковый шпат (CaF2), а также обогащают шлак оксидами железа за счет продувки при повышенном положении фурмы, и иногда за счет присадок железной руды, агломерата, окатышей, боксита.
Шлаковый режим. После начала продувки в конвертер вводят первую порцию шлакообразующих — примерно 1/2—2/3 их общего количества. В эту порцию обычно входят известь и плавиковый шпат; иногда вместо плавикового шпата применяют боксит, агломерат, окатыши, железную руду. Оставшееся количество шлакообразующих вводят одной или несколькими порциями в течение 1/3 длительности продувки. Иногда для ускорения шлакообразования часть извести (20-40%) загружают в конвертер перед заливкой чугуна.
Общий расход извести составляет 5—8 % от массы плавки; его определяют расчетом так, чтобы обеспечивалась требуемая основность шлака. Расход плавикового шпата обычно составляет 0,15—0,3 % и иногда достигает 1 %.
Кроме плавикового шлака, разжижающего первичные шлаки, для ускорения формирования шлака продувку начинают при повышенном положении фурмы для насыщения шлака оксидами железа.
По ходу продувки состав шлака изменяется: в результате растворения извести содержание СаО в шлаке возрастает, а содержание SiO2, MnO и FeO снижается. Заметно уменьшается содержание FeO в период наиболее интенсивного окисления углерода (середина продувки), когда сильное развитие получает реакция окисления углерода за счет окислов железа шлака. В конце продувки, когда углерода в металле мало, начинает окисляться железо и содержание FeO в шлаках возрастает.
Поведение железа и выход годного металла
В кислородно-конвертерном процессе, как в любом другом сталеплавильном процессе, в зависимости от периода плавки возможно как окисление, так и восстановление железа. Во время присадки твердых окислителей происходит восстановление железа в первую очередь углеродом металла по реакции Fe2O3 + 3[С] = 3{СО} + 2[Fe]. В период интенсивного формирования шлака в начале и конце плавки (при [С] < 0,1%) железо окисляется.
Если рассматривать плавку в целом, то в кислородно-конвертерных процессах наблюдается окисление железа, так как обычно присаживаемое количество оксидов железа в виде твердых окислителей (< 1 % от садки) меньше их количества, необходимого для формирования шлака (2-3%), поэтому неизбежные потери железа в результате его окисления и перехода в шлак обычно составляют 0,7-1,5%. Если плавка в целях возможно большей переработки лома ведется без твердых окислителей, то потери железа в результате его окисления повышаются до 1,5-2,0%. Кроме того, железо испаряется и уносится газами в виде частичек Fе2О3 бурого цвета. Средний выход газа в кислородных конвертерах составляет - 70 м3/т, а среднее содержание в нем пыли (в основном оксиды железа) 100-150 г/м3, следовательно, потеря железа в результате испарения в среднем составляет 1-1,5 от массы металла и уменьшаются при сокращении длительности продувки.
Часть железа теряется с корольками железа шлака. Содержание корольков железа в шлаке неизбежно и в конечном конвертерном шлаке колеблется в пределах 2-5%. Нижний предел относится к случаям выплавки низкоуглеродистой стали (0,5% [С] низкоокисленный шлак). Количество шлака 11-16%, поэтому потери с корольками составляют > 0,5%.
Вынос мелких капель металла отходящими газами наблюдается в начале продувки, когда поверхность металла не защищена шлаком и усиливается при приближении фурмы к поверхности ванны. В связи с этим следует обеспечивать раннее образование шлака. Общие потери металла с выбросами и выносом составляют в среднем около 1 %.
В целом общие потери железа при плавке стали в конвертерах с верхней подачей дутья обычно 3-4%, но могут достигать >5%, если продувка и шлакообразование протекают не в оптимальном режиме.
Кроме железа в процессе продувки окисляется весь кремний, большая часть углерода и марганца чугуна. Выход жидкой стали (выход годного) при кислородно-конвертерном процессе с учетом всех потерь составляет 88—90 % от массы металлической шихты.
Материальный и тепловой баланс кислородно-конвертерной плавки
Материальный баланс. В оптимальном случае, когда выход металла максимален (90%), а расход чугуна минимален (74%), расход чугуна на 1 т жидкой стали составляет (74:90) х 1000 = 822 кг. Учитывая, что жидкий чугун поступает с некоторым количеством доменного (миксерного) шлака, лом обычно содержит мусор и при разливке неизбежна некоторая потеря металла, для рассматриваемого случая минимальный фактический расход чугуна составляет ~ 830 кг/т и расход металлошихты (чугуна и лома) 1140-1150 кг/т литой стали. При плавке стали в мартеновских печах расход на 1 т литой стали металлошихты <1135 кг, а расход чугуна может быть снижен до < 500 кг. Таким образом, кислородно-конвертерный процесс отличается от мартеновского не только высоким потреблением чугуна, но и металлошихты в целом, т. е. большей емкостью главных видов материальных ресурсов.
Тепловой баланс. Сталь, выпускаемая из конвертера, должна быть нагрета до температуры 1600—1650 °С, в то время как заливаемый в кислородный конвертер чугун обычно имеет температуру 1250—1400 °С. Источником тепла для нагрева стали со шлаком, а также для восполнения потерь тепла с отходящими газами и через кожух конвертера является тепло, выделяющееся при окислении примесей чугуна.
Расчеты теплового баланса и практика показывают, что общее количество тепла, выделяющегося при окислении примесей чугуна при любом его составе, значительно превышает потребность в тепле для нагрева стали и шлака до температуры выпуска и для компенсации теплопотерь. В связи с этим при кислородно-конвертерной плавке обязательно применение охлаждающих добавок. Их количество определяется температурой чугуна, содержанием в нем кремния и других примесей, а также темпом работы конвертера, поскольку при удлинении пауз между продувками возрастают потери тепла в результате охлаждения конвертера.
В качестве охладителей можно использовать железную руду, стальной лом, агломерат, железорудные окатыши, известняк, доломит, известково-рудные брикеты.
Обычно в качестве охладителя применяют стальной лом. Избыточное тепло процесса расходуется при этом на его нагрев и расплавление (1420 кДж на 1 кг лома); расход лома доходит до 25—28 % от массы металлической шихты. Увеличение расхода лома снижает себестоимость стали, а также вызывает повышение выхода годного, так как лом содержит меньше, чем чугун примесей, окисляющихся при продувке. Достоинством лома считается также то, что он вносит мало вредных примесей, то есть не требует повышения расхода шлакообразующих.
Недостатком лома является то, что его завалку производят в начале плавки, в то время как выделение тепла происходит в течение всей продувки. В связи с этим начало продувки получается «холодным». Недостатком считают и то, что его охлаждающее воздействие не затрагивает непосредственно зоны максимальных температур в конвертере — подфурменной реакционной зоны, поскольку лом находится под слоем жидкого чугуна. Затраты времени на загрузку лома и возможность повреждения кусками лома футеровки конвертера также является недостатком этого охладителя.
Железная руда как охладитель применяется сравнительно редко. При использовании руды избыточное тепло расходуется на ее нагрев и восстановление железа из окислов; восстановленное железо несколько повышает выход годной стали. Охлаждающее воздействие руды в 3,0—3,8 раза выше охлаждающего воздействия равного количества лома; расход руды доходит до 8 %.
По сравнению с ломом руда как охладитель имеет ряд преимуществ: она обеспечивает охлаждение высокотемпературной подфурменной зоны; для загрузки руды не требуется останавливать продувку; содержащиеся в руде окислы железа ускоряют растворение в шлаке извести, т. е. ускоряют шлакообразование; наличие кислорода в руде снижает (на 10—15 %) расход газообразного кислорода.
Недостатки руды. Она вносит в шлак много SiO2, в связи с чем возрастает расход извести и количество шлака, что обычно вызывает уменьшение выхода годного. Кроме того, при большом расходе руды на плавку (> 5— 6 %) и ее введении одной порцией возрастает количество выбросов и снижается выход годного металла.
Применение в качестве охладителей агломерата, окатышей и брикетов оказывает такое же охлаждающее действие как и железная руда.
Основной причиной использования лома, а не руды в качестве охладителя является то, что лом заменяет значительное количество дорогостоящего чугуна.
При использовании в качестве охладителей известняка и доломита тепло расходуется на разложение содержания в них CaCO3 и MgCO3. Охлаждающая способность доломита и известняка близки к охлаждающей способности руды. Редкое использование этих охладителей связано с тем, что они не увеличивают выход годного металла.
Переработка лома в конвертерах
Основным недостатком конвертерных процессов является низкий расход лома в шихте, обычно составляющий не более 25-28% при средней доле лома в сталеплавильной шихте примерно ~ 45-50%.
Известны различные методы повышения доли лома в шихте конвертерных процессов, которые можно объединить в две основные группы: 1) методы, позволяющие лучше использовать тепло самого процесса (дожигание СО до СО, в полости конвертера, исключение применения твердых окислителей, уменьшение потерь тепла во время перевозок жидкого чугуна, остановок конвертера и т. д.); 2) методы дополнительного подвода тепла, прежде всего нагрева лома в полости конвертера или в специальных устройствах.
Дожигание СО в полости конвертера. Для проведения дожигания в верхнюю часть полости конвертера над ванной подают кислород (через двухъярусную фурму), обеспечивающий протекание реакции: СО + 1/2O2 = CO2; + 282 980 Дж/моль, тепло от которой передается ванне, что и позволяет увеличить расход охладителя — стального лома. Однако попытки использовать этот источник тепла показали, что реальное увеличение доли лома не превышает 10-15%, а стойкость футеровки конвертера резко снижается.
Подогрев лома в конвертере сжиганием твердого топлива (кокса, антрацита). Кусковой каменный уголь (антрацит) или кокс загружают в конвертер на стальной лом или после заливки чугуна и начала продувки.
При расходе угля около 1 % от массы шихты уменьшается расход чугуна на 2,5—3,5 % (от массы шихты), но в то же время возрастает длительность плавки, что снижает производительность конвертера примерно на 6 %. Недостатки – увеличение продолжительности плавки и наличие серы в топливе.
Вдувание пылевидного угля. Молотый каменный уголь или кокс вдувают в ванну в струе кислорода, подаваемого через фурму сверху или через донные фурмы. Тепло, выделяющееся при окислении вводимого углерода позволяет увеличить расход лома. Способ часто применяют в сочетании с подачей кислорода в верхнюю полость конвертера для дожигания СО до CO2 при такой комбинированной технологии доля стального лома в шихте может быть увеличена до 50 % и более. Недостаток – усложнение конструкции
Подогрев лома в конвертере сжиганием газообразного или жидкого топлива. Загруженный в конвертер стальной лом подогревают с помощью топливно-кислородной горелки, после чего заливают жидкий чугун и проводят плавку по обычной технологии. При этом достигают увеличения количества стального лома в шихте на 4—9 % (от массы шихты); длительность подогрева на разных заводах составляет 8—18 мин, расход природного газа 5—13 и кислорода на нагрев 15—20 м3/т стали.
Для повышения доли лома в шихте иногда применяют ферросилиций, карбиды кремния (SiC) и кальция (СаС2). Эти материалы, загружаемые с ломом, во время продувки окисляются со значительным тепловым эффектом. Однако они дороги и дефицитны, поэтому их систематическое применение бесперспективно.
Предварительный подогрев лома вне конвертера в простых устройствах (совках и ковшах) малоэффективен, поскольку в них удается нагреть лом только до 500-600°С, а сооружение специальных устройств, более совершенных в теплотехническом отношении, увеличивает капитальные и текущие затраты.
Конвертерные процессы с донной продувкой кислородом
Первые попытки замены воздушного дутья в бессемеровском и томасовском процессах не дали положительных результатов из-за отсутствия технологии продувки, обеспечивающей высокую стойкость днища конвертеров. Однако разработка способов донной продувки металла кислородом продолжалась, поскольку широкое промышленное применение процесса с верхней подачей дутья выявило его серьезные недостатки, к которым прежде всего относятся:
1 Высокие потери железа с отходящими газами, шлаком, выбросами и выносами.
2 Неполное и непостоянное от плавки к плавке усвоение вдуваемого кислорода ванной.
3 Большая дополнительная высота, требующаяся для размещения кислородных фурм.
Для исключения указанных недостатков разрабатывались возможности применения донного кислородного дутья. Задача состояла в том, чтобы предотвратить активное взаимодействие струй кислорода с металлом непосредственно у выхода из фурм, т.е. отодвинуть вглубь металла реакционную зону, имеющую очень высокую температуру (>2000°С) и значительное содержание оксидов железа, а поэтому вызывающую интенсивное разрушение (эрозию) днища.
Проводившиеся впоследствии в ряде стран исследования привели к разработке пригодного для промышленного использования метода введения кислорода снизу в виде струй, окруженных кольцевой защитной оболочкой из углеводородов. Кольцевая оболочка предотвращает контакт кислорода с чугуном у фурм и обеспечивает охлаждение околофурменной зоны.
Охлаждение околофурменной зоны происходит потому, что на выходе из фурмы протекает ряд эндотермических процессов: разложение углеводородов (CН4=С+2Н2-Q); растворение углерода в металле с поглощением тепла (С=[С]-Q); неполное сгорание углеводородов (CH4+1/2O2= CO+2{H2}- Q.
Отвод реакционной зоны вглубь металла происходит потому, что газ, будучи восстановителем, предотвращает окисление железа вдуваемым кислородом непосредственно у фурм.
При таких условиях в нижней части реакционной зоны не развивается очень высокая температура и не образуются оксиды железа, поэтому не наблюдается интенсивного износа фурм и днища уже при расходе топлива ~ 5 % от расхода кислорода (максимальный расход ~ 10 %).
В качестве источника углеводородов для создания защитной оболочки вокруг кислородной струи в конвертер подают тонкий слой природного газа (его основу составляет метан СН4), пропана (C3H8) и иногда жидкого топлива (сложные углеводороды типа СmНn). Расход природного газа составляет 6—8, пропана около 3,5 % от расхода кислорода.
Устройство конвертера
Конвертеры для донной кислородной продувки имеют отъемное днище, а в остальном схожи с конвертерами, применяемыми при верхней продувке кислородом. В днище в зависимости от емкости конвертера устанавливают от 7 до 22 фурм. Каждая фурма состоит из двух концентрически расположенных труб; по средней трубе из нержавеющей стали или меди с внутренним диаметром 24—50 мм подают кислород, внешняя труба из нержавеющей стали образует кольцевой зазор толщиной 0,5—2 мм вокруг наружной. Через зазор подается защитная среда — газообразные или жидкие углеводороды.
Технология плавки – отличительные особенности
Шлакообразование при донной подаче дутья и использовании кусковой извести ухудшается вследствие снижения температуры шлака и содержания в нем оксидов железа. Снижение температуры шлака вызвано перенесением высокотемпературной реакционной зоны из верхних горизонтов ванны в объем металла. В этих условиях температура шлака близка к температуре металла, которая в первой половине плавки < 1500°С.
Уменьшение содержания оксидов железа связано с интенсификацией перемешивания металла и шлака и более восстановительным характером газовой фазы (содержание СО2 в газовой фазе при верхнем дутье - 10 %, а при донной не более 3-4%). В этих концентрация оксидов железа обычно не превышает 5-6% (при верхней продувке 15-20%).
Поэтому нормальная выплавка углеродистой стали в конвертерах с донной подачей кислорода возможна только при использовании порошкообразной извести, вдувая ее также снизу в струе кислорода. В этом случае создаются благоприятные условия для шлакообразования, особенно в начальной стадии этого процесса.
Поведение примесей
За время продувки окисляется избыточный углерод, кремний, часть марганца; формируется шлак, в который удаляются фосфор и сера; расплавляется стальной лом; за счет тепла реакций окисления нагревается металл. Вначале, как и при продувке сверху, преимущественно окисляются кремний и марганец. Вместе с тем для процесса характерен ряд отличий, связанных прежде всего с тем, что при подаче дутья через несколько фурм снизу обеспечивается резкое усиление интенсивности перемешивания ванны.
В этих условиях существенно увеличивается поверхность контакта металл—газ и металл-шлак, что ведет к снижению окисленности шлака. Поэтому содержание FeO в шлаке по ходу продувки не превышает 5—6 %.
Из-за низкого содержания FeO в шлаке реакция окисления марганца [Мn] + (FeO) = (MnO) + Fe получает ограниченное развитие и количество окисляющегося за время продувки марганца (30-40 %) меньше, чем при верхней продувке (70-80%).
Окисление фосфора. При донной подаче дутья с применением порошкообразной извести дефосфорация протекает несколько полнее, чем при верхней подаче дутья.
Удаление серы. При донной подаче дутья с порошкообразной известью возрастает коэффициент распределения серы между шлаком и металлом (при В= 3-3,5 Lg= 6-8, может достигать 10), и доля серы, переходящей в газовую фазу (15-20%), поэтому общая степень десульфурации (переход в шлак и газовую фазу) увеличивается и обычно составляет 50-60% (при верхней подаче дутья 30-50%).
Особенностью процесса является то, что водород, образующийся в результате термического разложения вдуваемых углеводородов, растворяется в металле и в конце продувки содержание водорода достигает 6—9 см3 на 100 г металла, что недопустимо для сталей многих марок. Для удаления избыточного водорода перед выпуском проводят кратковременную (в течение 10—60 с) продувку металла аргоном; содержание водорода при этом снижается до 2—4 см3 на 100 г.металла.
Длительность продувки в зависимости от интенсивности подачи кислорода изменяется от 8 до 14 мин, удельный расход кислорода 45-55 м3/т, природного газа 4—5 м3/т, пропана 1,5 м3/т, жидкого топлива 2—3 л/т. Расход азота на продувку металла и на подачу в межплавочные периоды через фурмы с целью их охлаждения достигает 15—20 м3/т.
Тепловой баланс плавки при донной подаче дутья, несмотря на введение некоторого количества топлива, ухудшается. Это связано в основном с тем, что сжигание топлива происходит неполно, выделяющееся тепло обычно не компенсирует затраты тепла на разложение углеводородов; кроме того, уменьшается окисление железа. Вследствие этого доля лома в шихте при донной подаче дутья снижается на 2-5% по сравнению с верхней подачей.
Сравнение процессов с верхней и донной продувкой кислородом
Конвертерный процесс с донной подачей кислорода по сравнению с верхней подачей дутья, обладая значительно лучшими условиями взаимодействия дутья с ванной, имеет следующие основные преимущества:
1) в 3—5 раз уменьшаются потери железа с отходящими газами, поскольку наиболее крупные частицы бурого дыма (Fе2О3) поглощаются при прохождении через слой металла и шлака
2) почти отсутствуют потери с выбросами из-за более спокойного хода продувки;
3) в 1,5—2 раза уменьшаются потери железа со шлаком вследствие меньшего содержания в шлаке окислов железа;
4) увеличивается выход жидкой стали на 1,5-2% из-за п.1-3;
5) повышается и стабилизируется степень усвоения кислорода ванной, что облегчает управление процессом;
6) появляется возможность повышения интенсивности продувки, следовательно, производительности конвертера на 5-10%;
7) уменьшение расхода кислорода, объясняемое лучшим (на 5—10 %) его использованием в связи с тем, что окисляется меньше железа и меньшее количество углерода окисляется до СО2 (в отходящих газах содержится <5 % СО2, тогда как при продувке сверху до 10—15 %);
8) уменьшение количества окисляющегося при продувке марганца, что ведет к экономии ферромарганца;
9) более высокая степень дефосфорации и десульфурации;
10) уменьшается поглощение азота дутья вследствие понижения температуры в зоне взаимодействия кислорода и металла;
11) создаются благоприятные условия для организации вдувания в ванну различных инертных газов (аргона, азота) и порошкообразных материалов (извести, графита, угля и др.).
12) уменьшение высоты конвертерной установки из-за отсутствия вертикально-перемещаемых фурм, что упрощает сооружение конвертерного цеха;.
Вместе с тем, для процесса с донной продувкой кислородом характерны следующие недостатки:
- необходимо применение порошкообразной извести, что требует специального оборудования для ее помола и вдувания;
- необходима продувка металла инертным газом для удаления водорода, а также подача через фурмы инертного газа или воздуха в межплавочные периоды для охлаждения фурм;
- усложняется конструкция и эксплуатация днища с системой подвода кислорода, защитной среды, инертного газа и измельченной извести;
- возникают простои конвертера при замене днищ, которая длится 8—20 ч;
- на 2—5 % уменьшается количество перерабатываемого лома, что связано с затратой тепла на разложение углеводородов и уменьшением прихода тепла от окисления железа (в шлак) и в результате уменьшения доли углерода, окисляющегося до CO2;
- необходимы специальные устройства для улавливания дыма и выносимых из конвертера капель металла при его наклоне.
Конвертерный процесс с донным топливно-кислородным дутьем хотя и имеет ряд преимуществ по сравнению с процессом с верхней подачей дутья, однако его применение целесообразно лишь в специфических условиях: при переделе высокофосфористых и ванадийсодержащих чугунов, а также при выплавке особонизкоуглеродистой стали (< 0,05% С) из любого чугуна. При переделе обычных чугунов на сталь с нормальным содержанием углерода предпочтительна верхняя подача дутья, поскольку можно работать на кусковой извести и обеспечить стойкость футеровки конвертера на порядок выше.
Конвертерные процессы с комбинированной продувкой
Желание совместить преимущества конвертерных процессов с верхней и донной продувкой послужило основанием для разработки в последние годы технологии конвертерного процесса с комбинированной продувкой сверху и снизу.
Конвертерный процесс с комбинированной (верхней и донной) подачей кислорода обладает наибольшими технологическими возможностями, но по конструкции агрегата и системы его обеспечения является самым сложным. Для максимального использования преимуществ верхнего и донного дутья необходимо обеспечить подачу в конвертер: сверху - кислорода, кусковой извести и других флюсов; через дно - кислорода, защитного топлива, нейтрального газа, воздуха (для защиты фурм от затекания и забивания в межпродувочные периоды) и порошкообразной извести.
Получает распространение ряд разновидностей комбинированной продувки, которые помимо подачи кислорода через фурму сверху могут включать:
- вдувание инертных газов через пористые огнеупорные элементы в днище
- вдувание через донные фурмы смеси кислорода и инертного газа в кольцевой оболочке из углеводородных или нейтральных газов;
- вдувание через донные фурмы воздуха в кольцевой оболочке из инертных газов;
- подача части кислорода через донные фурмы в кольцевой оболочке из углеводородных или нейтральных газов
- перечисленные выше способы с дополнительным вдуванием извести через днище.
Наибольшее распространение получил конвертерный процесс с верхней подачей кислорода и донной подачей нейтрального газа через фурмы. Такая технология значительно проще, чем с комбинированной подачей кислорода, но позволяет сохранить основное преимущество донной продувки - хорошее перемешивание ванны и связанные с ним технологические преимущества. Донные фурмы изготавливают из коррозионностойкой стали в виде одной трубы или двух (труба в трубе с заглушенной внутренней трубой). Их диаметр и число зависит от принятой интенсивности продувки. Удельная интенсивность подачи нейтрального газа может изменяться в широких пределах: от 0,01-0,10 м3/т-мин до 3-4 м3/т-мин). Для увеличения расхода лома верхнюю фурму выполняют двухъярусной, что обеспечивает дожигание СО в полости конвертера. В качестве нейтрального газа обычно используют азот, поскольку инертный газ (аргон) дорог. Продувка металла азотом в течение всей плавки приводит к повышению содержания его в металле, которое зависит от интенсивности донной продувки. При минимальной интенсивности продувки поглощение азота незначительно и возможно достижение содержания его в готовой стали не более 0,003-0,004%. При необходимости снижения содержания азота в готовом металле в конце плавки ванну продувают аргоном. В межпродувочные периоды донные фурмы обычно переводят на воздушное дутье, поскольку оно дешевле азота.
Донная подача нейтрального газа может осуществляться также через пористые огнеупорные блоки. Направленные каналы в огнеупорных блоках имеют небольшой диаметр (<2 мм), металл и шлак в них не затекают, поэтому продувку нейтральным газом можно вести не в течение всей плавки, а тогда, когда это необходимо. Обычно продувку нейтральным газом начинают за несколько минут до окончания кислородной продувки и заканчивают через несколько минут после окончания продувки кислородом. При удельной интенсивности продувки до 0,2-0,3 м3/т-мин) обеспечивается снижение окисленности шлака и металла, при необходимости глубокое обезуглероживание, а также дополнительная дефосфорация и десульфурация металла.
Выплавка стали в подовых сталеплавильных агрегатах
Еще в начале 18 века была предложена идея выплавке стали в отражательных печах, которая воплотилась в 1784 году с появлением так называемой пудлинговой печи. Однако, в таких печах сжигание топлива даже с высокой теплотой сгорания при подаче холодного воздуха не могло обеспечить температуру в плавильном пространстве более 1420—1460 °С. При этой температуре только металл, содержащий >1,5 % С, может находиться в жидком состоянии, но для разливки его в слитки нужно иметь более высокую температуру (на 60—80 °С). Недостатком металлургической техники того времени было также низкое качество огнеупорных материалов. В связи с этим до середины 19 века основным способом получения высокоуглеродистой стали в ничтожно малых количествах был тигельный процесс.
Получить сталь в жидком состоянии путем сплавления чугуна и скрапа впервые удалось П. Мартену, использовавшему тепло отходящих из плавильного пространства продуктов сгорания для подогрева газообразного топлива и воздуха, расходуемого для его сжигания (принцип регенерации тепла).
Таким образом, появилась возможность переплава отходов самого металлургического производства (стальной скрап), которые невозможно перерабатывать в бессемеровских конвертерах (1855г).
В конце пятидесятых годов в СССР и в некоторых других странах появился и был реализован новый метод использования тепла отходящих из плавильного пространства продуктов сгорания топлива для нагрева скрапа. Так появился новый подовый сталеплавильный агрегат — двухванная печь.
Принцип работы мартеновской печи
Для того, чтобы выпустить из печи и разлить сталь, в зависимости от химического состава и способа разливки, ее следует нагреть до 1600—1650 °С. Металл может быть нагрет до этой температуры, если продукты сгорания факела имеют еще более высокую (на 100—150 °С) температуру.
Таким образом, температура факела должна быть не менее 1750—1800 °С. Теоретическая температура горения любого топлива определяется уравнением
tт = (Qт + Qгф)/Cпс Vпс,
где Qт — теплота сгорания топлива;
Qгф — физическое тепло нагретых воздуха и горючих газов;
Vпс — объем продуктов сгорания;
Cпс — их средняя теплоемкость.
Из уравнения следует, что повысить теоретическую температуру факела можно при использовании топлива с высокой теплотой сгорания (мазута, природного газа), повышении температуры подогрева воздуха и уменьшении объема продуктов сгорания Последнее достигается обогащением кислородом воздуха для сжигания топлива, что приводит к уменьшению количества балластного азота в продуктах сгорания. Эта идея широко применяется в настоящее время на большинстве отечественных заводов. Содержание кислорода в воздухе увеличивают от 21 до 25—30 %. Роль подогрева воздуха в тепловой работе печи при этом уменьшается, хотя воздушные регенераторы остаются.
Устройство мартеновской печи
Мартеновская печь состоит из верхнего и нижнего строений. Верхнее строение печи, расположенное над рабочей площадкой цеха, состоит из рабочего пространства, головок и вертикальных каналов Плавильное (или рабочее) пространство ограничено передней стенкой с завалочными (рабочими) окнами, задней стенкой с выпускным отверстием, подом и сводом. В торцах плавильного пространства расположены головки, служащие для подвода топлива и воздуха и отвода из плавильного пространства продуктов сгорания. Головки соединяются с нижним строением печи вертикальными каналами. Нижнее строение печи расположено под рабочей площадкой цеха и состоит из шлаковиков, предназначенных для отделения от дымовых газов частичек уносимых ими из плавильного пространства шлака и пыли, регенеративных камер и боровов с перекидными клапанами. В регенераторах осуществляется подогрев воздуха до поступления в плавильное пространство Тепло для их нагрева отдают дымовые газы, периодически проходящие через регенераторы Направление движения дымовых газов, воздуха и топлива регулируется поочередным открытием тех или иных перекидных (пусковых) клапанов.
Проходя через предварительно нагретую насадку регенератора воздух нагревается до 1000—1200 °С и в нагретом состоянии через «головку» попадает в печь.
В рабочем пространстве печи происходит смешение топлива с воздухом и сгорание его с образованием факела пламени, имеющего температуру 1800—1900 °С
Продукты сгорания (дым) с температурой 1650—1700 °С поступают в каналы противоположной головки, затем в вертикальные каналы, в шлаковики и регенераторы (с температурой 1500—1550 °С).
По истечении определенного промежутка времени (5—20 мин) после нагрева насадки регенератора и соответствующего охлаждения противоположной насадки регенератора производится изменение направления движения воздуха на обратное при помощи перекидных клапанов. Операцию изменения направления газов с помощью клапанов называют «перекидкой клапанов».
Из рабочего пространства печи дымовые газы выходят с температурой 1680—1750 °С, из шлаковика в регенератор — с температурой 1500—1550 °С. Пройдя насадку регенератора, они охлаждаются до 500—700 °С. Обычно стремятся использовать тепло отходящих газов, направляя их по системе боровов в котел-утилизатор. Если по каким-либо причинам котел-утилизатор не установлен или находится на ремонте, дымовые газы по боровам направляют в трубу.
Конструкция отдельных элементов мартеновской печи
Рабочее пространство печи
Рабочее пространство мартеновской печи ограничено сверху сводом, снизу — подом (или «подиной»). На границе задней стенки и подины предусмотрено отверстие для выпуска плавки (сталевыпускное отверстие). В передней стенке печи имеются проемы — завалочные окна, через которые в рабочее пространство загружают твердую шихту и заливают (по приставному желобу) жидкий чугун.
Из всех элементов печи рабочее пространство находится в наиболее тяжелых условиях — в нем идет плавка стали. Во время завалки твердой шихты огнеупорные материалы, из которых изготовлено рабочее пространство, подвергаются резким тепловым и механическим ударам, во время плавки они подвергаются химическому воздействию расплавленных металла и шлака; в рабочем пространстве максимальная температура.
В соответствии с этим к огнеупорным материалам рабочего пространства предъявляют высокие требования: а) высокая огнеупорность; б) химическая устойчивость против воздействия шлака, металла и печных газов; в) достаточная механическая прочность при высоких температурах; г) хорошая термостойкость при колебаниях температуры.
По химическим свойствам применяемые огнеупорные материалы делят на: а) кислые — динасовый кирпич, кварцевый песок; б) основные — магнезитовый кирпич, магнезитовый порошок, доломит; в) нейтральные (со свойствами амфотерных окислов) — шамот, хромомагнезит, магнезитохромит, высокоглиноземистый шамот, форстерит.
Подина печи
Огнеупорные материалы, применяемые при изготовлении подины мартеновской печи, должны соответствовать типу шлака, под которым проводится плавка (рисунок 8). В противном случае в результате энергичного взаимодействия шлака с огнеупорным материалом подина печи ошлакуется, то есть перейдет в шлак и печь выйдет из строя.
1 — наварка (кварцевый песок); 2 – наварка (магнезитовый порошок или молотый обожженный доломит); 3 — магнезитовый кирпич; 4 — динасовый кирпич; 5 — стальной лист; 6 — тепловая изоляция (пористый шамот); 7 — шамотный кирпич
Рисунок 8 - Устройство кислого и основного подов мартеновской печи
Задняя и передняя стенки мартеновской печи работают (особенно в нижней части) почти в тех же условиях, что и подина, так как они также соприкасаются с жидким металлом и шлаком. Заднюю и переднюю стенки кислой мартеновской печи выкладывают из динасового кирпича, основной мартеновской печи — из магнезитового.
Изношенные участки футеровки (особенно зону шлакового пояса) ремонтируют после каждой плавки (эту операцию называют заправкой печи): на изъеденные места кислой подины набрасывают песок, а основной подины — магнезитовый или доломитовый порошок. Заправке подвергают также и торцовые части подины, прилегающие к головкам печи; их называют откосами.
Свод печи
Свод мартеновской печи практически не соприкасается со шлаком, поэтому его можно изготовлять из кислых и основных огнеупорных материалов независимо от типа процесса. Своды мартеновских печей изготовляют из динасового или термостойкого магнезито-хромитового кирпича.
Динасовый кирпич при высоких температурах (до 1700 °С) сохраняет достаточную прочность и повышенное сопротивление сжатию. Во время эксплуатации динасовые кирпичи свода свариваются в монолит, что позволяет выполнять его самонесущим (в виде акрки) и гарантирует его надежность даже в случае, если какой-либо кусок свода упадет. Однако при нагреве свыше 1700 °С динасовый кирпич быстро оплавляется; кроме того, он сильно разъедается плавильной пылью, состоящей из окислов железа (образуются легкоплавкие силикаты железа).
Магнезитохромитовый кирпич характеризуется более высокой огнеупорностью (допустимая температура нагрева 1800 °С), что способствует повышению производительности печи. Стойкость свода из магнезито-хромитового кирпича в 2—3 раза выше, чем из динасового. Особенности эксплуатации свода из магнезито-хромитового кирпича: а) кирпичи плохо свариваются и не образуют монолита; б) коэффициент расширения магнезито-хромитового кирпича выше, чем динасового, в результате чего при разогреве арки свода наружные швы раскрываются, а на внутренней стороне возникают высокие напряжения сжатия, что приводит к сколу внутренней части свода; в) повышенная теплопроводность и большие неплотности кладки (раскрытые швы) обусловливают более высокие (почти в два раза) потери тепла с 1 м2 площади свода; г) объемная масса магнезитохромитового кирпича в 1,5 раза больше, чем динасового. Все это исключает возможность применения обычного арочного свода. Свод приходится выполнять распорно-подвесным с креплением и прокладками между кирпичами, а это усложняет и удорожает конструкцию.
Однако возможность повысить температуру в печи при использовании магнезитохромитового свода, а также увеличить срок службы свода делает устройство сложной системы подвесок рентабельным, поэтому своды такого типа нашли широкое применение.
Стойкость магнезитохромитового свода составляет 500—1000 плавок (динасового 200—350 плавок).
Головки печи
Головки служат для подвода топлива и воздуха и отвода из плавильного пространства продуктов сгорания. От того, с какой скоростью вводят в рабочее пространство воздух и топливо и насколько хорошо струи топлива и воздуха перемешиваются, зависят форма и ряд других характеристик факела, а от факела зависит и вся работа печи.
Головки должны обеспечить: 1) хорошую настильность факела по всей длине ванны (чтобы максимум тепла передать ванне и минимум — своду и стенкам); 2) минимальное сопротивление при отводе продуктов сгорания из рабочего пространства; 3) хорошее перемешивание топлива и воздуха для полного сжигания топлива в рабочем пространстве печи.
Чтобы удовлетворить первому и третьему требованиям, сечение выходных отверстий должно быть малым (чтобы скорости ввода воздуха и топлива были максимальными); для удовлетворения второго требования сечение, наоборот, должно быть максимальным. Поэтому, в зависимости от условий работы, выбирают промежуточный вариант.
Шлаковики
Отходящие из рабочего пространства печи дымовые газы проходят через головку и по вертикальным каналам попадают в шлаковики (рисунок 9).
1 - вертикальные каналы; 2 — шлаковик; 3 — насадки регенераторов, 4 — подвесной свод наднасадочного пространства; 5 — поднасадочные пространства
Рисунок 9 - Устройство шлаковиков и регенераторов мартеновской печи
Шлаковики служат для улавливания плавильной пыли и шлаковых частиц, уносимых продуктами сгорания из рабочего пространства, и тем самым предохраняют насадки регенератора от засорения. Сечение шлаковика гораздо больше сечения вертикального канала, поэтому при попадании дымовых газов в шлаковик их скорость резко уменьшается и, кроме того, меняется направление движения газов. Это приводит к тому, что значительная часть (50—75 %) плавильной пыли оседает в шлаковиках, причем оседает крупная пыль, более мелкие фракции в значительной степени уносятся в трубу (10—25 % пыли оседает в насадках регенераторов).
На пути движения дымовых газов плавильная пыль, содержащаяся в них, реагирует с материалами кладки. Это обстоятельство приходится учитывать при выборе материалов для кладки вертикальных каналов и шлаковиков.
Почти вся пыль представляет собой основные окислы (в том числе 60—80 % окислов железа). Если вертикальные каналы и шлаковики футерованы динасовым кирпичом, то основные окислы, из которых состоит пыль, энергично взаимодействуют с кислым материалом футеровки с образованием легкоплавких силикатов железа. Стойкость футеровки оказывается недостаточной и, кроме того, оседающая в шлаковиках пыль образует плотный монолит, который во время ремонта очень трудно извлекать.
В связи с этим для кладки вертикальных каналов и шлаковиков часто применяют термостойкий магнезитохромитовый кирпич.
Регенераторы
Из шлаковиков отходящие газы при температуре 1500— 1550 °С попадают в насадки регенераторов (рисунок 9).
Регенераторы должны обеспечивать более или менее постоянную высокую температуру подогрева газа и воздуха. В наиболее тяжелых условиях работают верхние ряды насадок, поскольку в этой части температура и содержание пыли наиболее высоки. Поэтому верхние ряды насадок выкладывают из термостойкого магнезитохромитового кирпича. Нижние ряды насадок работают при температурах менее 1000—1200 °С, поэтому их выкладывают из более дешевого и в то же время прочного шамотного кирпича.
Из поднасадочного пространства отходящие газы при температуре 500—700°С попадают в борова, которые предназначены для подвода к регенераторам газа, воздуха и отвода от них продуктов сгорания к трубе или к котлу-утилизатору. Кладка боровов обычно состоит из двух слоев: внутреннего, выполняемого из шамотного кирпича, и внешнего — из обычного красного кирпича.
Основные особенности и разновидности мартеновского процесса
Мартеновский процесс возник как способ получения стали путем сплавления лома и чугуна на подине отражательной печи. Это предопределило главную его особенность - недостаток собственного тепла процесса для проведения плавки. Для плавления твердых шихтовых материалов и нагрева жидкого металла и шлака до заданной температуры, а также для компенсации значительных тепловых потерь, вызываемых большой продолжительностью плавки, недостаточно физического и химического тепла шихтовых материалов.
Сгорание топлива должно происходить в пределах рабочего пространства, иначе оно заканчивается в вертикальных каналах и регенераторах, что в значительной степени снижает стойкость этих элементов печи и повышает расход топлива. Для того, чтобы сгорание топлива завершилось в рабочем пространстве печи, расход воздуха должен превышать теоретически необходимое количество для полного сгорания, поэтому коэффициент избытка воздуха составляет обычно 1,15-1,20. Продукты сгорания любого топлива будут состоять из окислительных газов СО2, Н2О, О2 и некоторого количества нейтрального азота N2. Таким образом, характер атмосферы мартеновской печи во все периоды плавки окислительный. Это одна из особенностей мартеновского процесса.
Другой особенностью технологии мартеновской плавки является то, что тепло к ванне поступает сверху, а отводится снизу через подину, поэтому температура шлака выше, чем металла, и по глубине ванны имеется различие в температуре металла. Толщина шлака в мартеновских печах колеблется от 50 до 500 мм, глубина ванны металла — от 500 до 1500 мм (в зависимости от емкости и конструкции печи). При этом выравниванию температуры по глубине ванны способствуют пузырьки СО, выделяющиеся в результате окисления углерода и приводящие к «кипению» ванны. Однако некоторый перепад температур по глубине ванны все же сохраняется, особенно между шлаком и металлом. В начале доводки этот перепад составляет 70—100, а в конце 20—50 °С. По длине печи температура металла также неодинакова. Под факелом температура металла несколько выше, чем у отводящих головок.
Четвертая особенность технологии мартеновской плавки — участие пода печи в протекающих процессах. В отличие от плавки в конвертерах, продолжающейся всего 15—30 мин, плавка в мартеновской печи продолжается много часов. Поэтому влияние взаимодействия металла с подиной оказывается очень ощутимым.
Пятая особенность технологии мартеновской плавки заключается в том, что жидкий металл все время находится под слоем шлака (шлак примерно вдвое легче металла). Практически все вводимые в печь добавки попадают на шлак или проходят в металл через шлак. Кислород из атмосферы печи в металл переходит также через шлак. Если учесть, что тепло от факела к металлу также передается через шлак, то становится понятной огромная роль шлака в мартеновском процессе. По существу руководство ходом плавки заключается в том, что меняют состав, температуру и консистенцию шлака и таким образом добиваются получения металла нужного состава и качества.
Непосредственное окисление металла (железа и его примесей) кислородом газовой фазы наблюдается в мартеновских процессах только в период завалки, прогрева и плавления шихты, а также может иметь место в период интенсивного кипения, когда капли металла выбрасываются в газовую фазу. По мере окисления железа и входящих в состав шихты примесей железа образуется шлак, обладающий окислительными свойствами. Он становится передаточным звеном в системе газовая фаза-металл.
Процесс перехода кислорода из газовой фазы в металл происходит непрерывно. За плавку ванна поглощает от 1 до 3 % кислорода от массы металла. Соотношение между поступающим кислородом и потребностями в нем может быть различным. Это различие главным образом зависит от доли чугуна в шихте и определяет основные разновидности (варианты) мартеновского процесса: рудный, скрап-рудный процесс, скрап-процесс и скрап-угольный мартеновский процесс.
В том случае, когда поступление кислорода из газовой фазы больше потребностей в нем, избыточный кислород должен быть связан карбюратором, и процесс называется карбюраторным (скрап-угольным). Если поступление кислорода равно потребностям, в этом случае процесс называется скрап-процессом. Когда потребность в кислороде значительно больше количества, поступающего из обязательных источников, то недостающий кислород вводят с железной рудой или ее заменителями в самом начале процесса (в завалку). Такой процесс называется скрап-рудным. При использовании 100% чугуна процесс называется рудным.
Скрап-рудный процесс является одним из самых распространенных вариантов мартеновского процесса. Особенность его состоит в том, что основной составляющей металлической части шихты является в основном жидкий чугун. Доля чугуна в шихте колеблется в основном в пределах 50-70%. Для ускорения (интенсификации) окисления элементов шихтовых материалов в печь загружают железную руду, кислород которой расходуется на окисление части примесей. Загружается руда до заливки чугуна (обычно под слой лома) и по ходу плавки (в период полировки). Благодаря восстановлению железа руды увеличивается выход годного. Если при высоком расходе чугуна в мартеновских печах процесс вести без интенсификации твердыми окислителями, то продолжительность плавки увеличивается вследствие недостаточной скорости поступления кислорода из газовой фазы печи.
Скрап-процесс обычно распространен на заводах, не имеющих доменного производства. В этом случае основной составляющей металлической шихты является металлический лом. Доля чугуна, твердого или редко жидкого, обычно составляет 25-45%. Железную руду, если и дают, то в незначительных количествах (обычно 1-2%) только по ходу плавки (в период доводки), а не в период завалки. Таким образом, основным источником кислорода является газовая фаза.
Карбюраторный (скрап-угольный) процесса представляет работу печи на малом расходе (10-15 %) чугуна или только на ломе. При этом содержание углерода в исходной шихте оказывается значительно меньше, чем требуется для нормального ведения процесса, поэтому в шихту вводят углеродсодержащие материалы (карбюраторы), которыми обычно являются антрацит, кокс, графит, каменный или древесный уголь и т. п.
Основные периоды мартеновской плавки и их значение
Процесс выплавки стали в мартеновской печи при любой разновидности его включает следующие основные периоды: заправка печи; завалка и прогрев твердых шихтовых материалов; заливка жидкого чугуна (завалка твердого чугуна) и плавление; доводка плавки; раскисление и легирование металла; выпуск металла и шлака.
Заправка печи производится для восстановления изношенных за время плавки участков наварки передней и задней стенок и откосов. Лучшее приваривание заправочных материалов наблюдается при высокой температуре рабочего пространства, поэтому заправка задней стенки выше уровня продуктов плавки производится в период доводки предыдущей плавки; заправка откосов на уровне шлака и ниже производится во время выпуска плавки.
Завалка твердых шихтовых материалов с помощью специальных мульдозавалочных машин: стальной скрап, железную руду, а также твердый чугун. Порядок завалки и расположение шихты в печи влияют на скорость плавления шихты, шлакообразование и стойкость печи. При работе скрап-рудным процессом завалка осуществляется в следующем порядке. На подину равномерным слоем загружают часть железной руды (агломерата, окатышей), затем слой известняка (извести) и оставшуюся руду. Такой порядок завалки предотвращает приваривание известняка к подине и обеспечивает образование в начале плавки железистого шлака, в котором в дальнейшем относительно легко растворяется известняк или известь. Во время и после завалки руду и известняк прогревают, по крайней мере для полного удаления влаги. При этом на печах большой вместимости обычно сыпучие подвергают перемешиванию (шуровке).
После завалки и прогрева железной руды и известняка загружают лом, располагая мелкий лом внизу, крупный вверху. Твердый чугун или отходы (лом) чугуна загружают поверх лома.
При работе скрап-процессом на подину загружают легковесный лом, поверх которого загружают известняк (8-10 %). Затем заваливают остальной лом. Поверх лома загружают чугун. При скрап-угольном процессе порядок завалки такой же, что и при скрап-процессе, но в слое лома располагают слой карбюратора.
Прогрев. Для обеспечения успешного плавления и уменьшения его длительности необходим прогрев шихтовых материалов, особенно при скрап-рудном процессе. Продолжительность прогрева зависит от многих факторов: теплового режима работы печи, скорости завалки, количества загружаемых материалов (лома) и т.д. Для сокращения периода прогрева сыпучие загружают послойно и перемешивают для вскрытия непрогретой массы. Для повышения поглощения тепла шихтой во время прогрева наверх загружают более крупную металлическую шихту, имеющую большую теплопроводность. Температура нагрева лома, по крайней мере верхних его слоев, должна быть не ниже температуры затвердевания чугуна (1250-1350°С)
В случае заливки чугуна на недостаточно прогретую шихту происходит его "закозление". Это приводит к существенному увеличению продолжительности периода плавления, так как одновременно ухудшается и теплопередача. Кроме того, во время неактивного состояния ванны в шлаке накапливается большое количество оксидов железа, при нагреве чугуна до жидкоподвижного состояния это может привести к выбросам шлака и даже металла из печи из-за интенсивного окисления углерода кислородом FeO. Перегрев шихты также недопустим, так как при заливке жидкого чугуна наблюдается бурная реакция окисления углерода, приводящая к выбросам шлака и металла из печи. После прогрева шихтовых материалов в печь заливают жидкий чугун.
Заливка жидкого чугуна осуществляется при помощи съемного или стационарного желоба. Продолжительность заливки чугуна определяется организационными возможностями и обычно составляет 15-30 мин. Чугун необходимо заливать медленно, иначе возможны бурное окисление углерода чугуна и выбросы металла и шлака из печи.
Плавление как самостоятельный период плавки начинается после заливки жидкого чугуна. Основной задачей этого периода являются расплавление металла и нагрев его выше температуры плавления (линии ликвидус) на 40-60°С, а также предварительное рафинирование металла.
Создание в период плавления оптимальных шлакового режима и баланса кислорода позволяет в этот период провести основную часть рафинирования металла, например, во многих случаях обеспечить требуемую степень дефосфорации его. Кроме фосфора, в период плавления окисляются и другие примеси углерод, кремний и марганец, а также может иметь место значительное окисление железа. Продолжительность плавления, кроме вместимости и тепловой мощности печи, зависит от шлакового режима периода плавления, количества чугуна в шихте, температуры жидкого чугуна и степень нагрева твердых шихтовых материалов, особенно лома.
При работе на шихте, содержащей значительное количество жидкого чугуна (> 50%), и ведении процесса в печах большой вместимости удаление шлака из печи в период плавления является важным фактором уменьшения продолжительности плавления. В этот период должно быть удалено максимально возможное количество шлака для уменьшения толщины слоя шлака в печи и улучшения теплопередачи от факела к ванне. Это вызывает снижение расхода известняка при хорошей дефосфорации и десульфурации металла. Уменьшение расхода известняка связано с тем, что основность шлаков, спускаемых в период плавления, мала (0,5-1,0).
Образующаяся в результате окисления углерода окись углерода вспенивает шлак и он начинает вытекать, «сбегать» из печи. Шлак, стекающий из печи во время плавления после заливки жидкого чугуна, называют «сбегающим» первичным шлаком. Состав этого шлака характеризуется низкой основностью и высоким содержанием FeO и МnО (если в чугуне содержится больше 1 % Мп). Железистые шлаки и пониженная температура благоприятствуют дефосфорации. Фосфор в этих шлаках находится главным образом в виде (FeO)3P2O5. Средний состав первичного сбегающего шлака следующий, %: SiO2 20—35; А12О3 3—5; FeO 25—35; Fe2O3 3—5; CaO 12—20; MgO 5—9; МnО 15—35; P2O5 2—4.
Со сбегающим шлаком из печи удаляется значительное количество нежелательных окислов SiO2 и Р2О5, а вместе со шлаком уходит также большое количество окислов железа и марганца. Поэтому в тех случаях, когда в шихте мало серы и фосфора, сбегающий шлак стараются задержать в печи и уменьшить тем самым потери металла. Количество сбегающего шлака составляет 8—10 % от массы металла (50—70 % от всего образующегося во время плавления шлака). Спуск шлака продолжается почти до полного расплавления шихты.
Обычно продолжительность периода плавления при работе на жидком чугуне 2-3 ч. При работе на твердом чугуне период плавления продолжительнее (3-4 ч), так как для нагрева чугуна необходим дополнительный расход тепла.
За период плавления полностью окисляется кремний, почти полностью марганец и большая часть углерода (30-40%)
Состав шлака, сформировавшегося к моменту расплавления и после него, имеет обычно следующий состав: 35—45 % СаО, 20—25 % SiO2, 10—15 % FeO, 13—17 % МnО.
Доводка плавки для различных вариантов мартеновского процесса проводится примерно по одной схеме. Задача этого периода состоит в окончательном рафинировании металла и дополнительном нагреве ванны. Доводка обычно состоит из двух стадий: полировки (рудного кипения) и чистого (свободного) кипения.
Полировка - это период наводки шлака для обеспечения требуемой степени дефосфорации и десульфурации металла. Для этого сначала скачивают из печи шлак, а затем присаживают шлакообразующие материалы: известь, боксит, плавиковый шпат и т. д.
Скачивание шлака проводят следующим образом. После расплавления ванны в печь подают некоторое количество железной руды или продувают ванну кислородом или сжатым воздухом. Углерод начинает интенсивно окисляться, уровень шлака в печи несколько поднимается. В это время отключают подачу топлива, давление в печи падает и шлак вспенивается и уходит из печи в специально подготовленные шлаковые чаши. На печах малой и средней емкости шлак скачивается через среднее завалочное окно, на большегрузных печах шлак скачивается еще и через специальные отверстия в задней стенке печи. В тот момент, когда шлаковые чаши наполнятся шлаком, топливо вновь подают в печь, давление в печи возрастает, шлак оседает и перестает уходить из печи.
Часто для ускорения скачивания шлак сгребают с помощью гребков, помещаемых на хоботе завалочной машины. Отключать подачу топлива при этом не следует. Основность скачиваемого шлака гораздо выше, чем «сбегающего» во время плавления. Вместе со скачиваемым шлаком из печи уходят значительная часть оставшегося в ванне фосфора и некоторое количество серы.
Чтобы перевести оставшиеся в шлаке фосфор и серу в прочные соединения, наводят новый шлак присадками свежеобожженной извести. Основность шлака CaO/SiO2 при этом возрастает до 2,5 и более. Если такой шлак оказывается чрезмерно густым и вязким, то его разжижают присадками боксита или плавикового шпата. Окислительная атмосфера печи непрерывно питает ванну кислородом и содержащийся в металле углерод окисляется и ванна кипит. Вызываемое этим перемешивание благоприятствует передаче тепла от факела к ванне, и температура металла постепенно возрастает.
Чтобы ускорить шлакообразование, иногда одновременно присаживают и железную руду (агломерат, окатыши). Кислород твердого окислителя интенсивно окисляет углерод, что обеспечивает хорошее перемешивание ванны и ускоряет шлакообразование. Успешно проводить полировку можно лишь в том случае, если металл достаточно нагрет к концу плавления, так как присадка железной руды и флюсов охлаждает ванну. Для нормального проведения полировки необходим перегрев металла выше температуры плавления на 40-60°С. При указанной степени перегрева количество единовременно присаживаемых материалов не должно превышать 2-2,5%. Если по условиям дефосфорации и десульфурации необходимо присаживать большее количество материалов, то их дают в два и несколько приемов, обеспечивая соответствующий нагрев ванны. При этом следует иметь в виду, что 1 % твердого окислителя охлаждает ванну на 20-25°С, извести - на 10-15°С, боксита - на 15-20°С (В конвертерных процессах, то есть без поглощения тепла от факела, охлаждающее действие выше, соответственно 35-40, 15-20, 20-25°С). При необходимости глубокой дефосфорации и десульфурации металла производят одно или два дополнительных скачивания и наводки нового шлака в период доводки.
Кроме того, для нормального проведения периода полировки необходим некоторый запас углерода, который обычно составляет 0,2-0,5% и зависит от продолжительности периода (какое количество и во сколько приемов присаживаются материалы), вместимости печи (чем меньше вместимость, тем больше требуется запас углерода).
Период чистого кипения необходим для окончательной подготовки металла к выпуску: нагрев его до заданной температуры, удаление газов и неметаллических включений. В этот период углерод окисляется практически только горячим кислородом газовой фазы печи при непрерывном поступлении тепла факела в ванну. Это создает благоприятные условия для нагрева металла. В этот период не рекомендуется присаживать в шлак флюсы и твердые окислители, за исключением случаев выплавки низкоуглеродистой стали, когда для интенсификации реакции окисления углерода разрешается присадка руды небольшими порциями.
Скорость нагрева металла в период чистого кипения обычно составляет 1-2°С/мин и зависит от вместимости и тепловой мощности печи, а также состояния шлака. Шлак в этот период должен иметь нормальную жидкоподвижность. Скорость окисления углерода в этот период обычно колеблется в пределах 0,003-0,006% С/мин и зависит от вместимости печи (удельной нагрузки на подину), окислительной способности газовой фазы и содержания углерода в металле При достижении концентрации углерода менее 0,10-0,15% скорость его окисления существенно снижается. Содержание марганца в период чистого кипения, когда [С]>0,1%, обычно увеличивается вследствие восстановления его из шлака ввиду повышения температуры ванны.
Основность шлака в этот период должна быть достаточной для предупреждения восстановления фосфора и обеспечения некоторого удаления серы. Это наблюдается при основности ~ 2,5. Но при чрезмерном повышении основности увеличивается вязкость шлака, что препятствует удалению серы из металла и нормальному нагреву его.
Скорость удаления серы из металла тем больше, чем больше скорость окисления углерода, так как, во-первых, сера частично удаляется вместе с СО в печные газы из металла и шлака; во-вторых, чем выше скорость окисления углерода, тем лучше использование десульфурирующей способности шлака. Повышение температуры ванны в этот период обеспечивает получение гомогенного шлака, увеличение скорости окисления углерода, а это улучшает не только десульфурацию металла, но и дегазацию его.
Во время чистого кипения благодаря нормальному состоянию ванны (наличию гомогенного шлака и равномерному кипению) скорость поступления водорода из газовой фазы снижается, а скорость удаления его в пузырях СО возрастает. В результате содержание водорода в металле снижается. По многочисленным исследованиям, содержание водорода в металле в начале чистого кипения обычно составляет 4-6 см3/100 г, в процессе чистого кипения снижается на 1-2 см3/100 г.
Продолжительность чистого кипения для дегазации металла, включая снятие его переокисленности, составляет 20-30 мин. Но этого времени часто бывает недостаточно для нагрева металла, особенно при выплавке легированной стали, требующей введения в конце плавки большого количества холодных ферросплавов, поэтому продолжительность чистого кипения обычно составляет 30-45 мин.
Задача мастера-сталевара заключается в том, чтобы к моменту, когда температура металла окажется достаточной для выпуска, ванна хорошо прокипела, очистилась бы от газов и неметаллических включений, в металле содержалось бы необходимое количество углерода и минимум серы и фосфора. При соблюдении всех этих требований период кипения заканчивают и металл раскисляют. Если раскислители вводят в ковш, то кипящий металл выпускают из печи без раскисления.
Раскисление и легирование металла могут быть проведены как в печи, так и в ковше (на желобе) во время выпуска плавки. В печь обычно присаживают тугоплавкие и труднорастворимые ферросплавы, например, феррохром. Для уменьшения угара раскисляющих и легирующих элементов металл предварительно раскисляют низкопроцентным ферросилицием (15-20% Si).
Выпуск плавки всегда является ответственной операцией. Чтобы выпуск плавки протекал нормально, необходимо поддерживать нормальными размеры сталевыпускного отверстия и хорошо его заделывать. Продолжительность выпуска плавки из мартеновских печей обычно колеблется в пределах 10-20 мин и в основном зависит от вместимости печи (чем меньше вместимость печи, тем меньше продолжительность выпуска). По ходу выпуска в ковш присаживают раскислители и легирующие, в современной практике эту операцию стараются перенести полностью из печи в ковш.
Общая длительность плавки в мартеновских печах колеблется в пределах от 5-6 до 10-15 ч и зависит от многих факторов вместимости печи, вида применяемого чугуна (жидкий или твердый), его доли в шихте, системы отопления, степени интенсификации сжигания топлива и окисления примесей, степени механизации работ по обслуживанию печи и т. д. Увеличение вместимости печи, при постоянстве других условий, приводит к возрастанию длительности плавки.
Плавки на жидком чугуне имеют меньшую продолжительность чем на твердом, поскольку при использовании жидкого чугуна уменьшается длительность периодов загрузки шихты и плавления. С увеличением доли чугуна в шихте также уменьшается продолжительность периодов загрузки и плавления.
Применение топлива с высокой теплотой сгорания (мазута природного газа) и интенсификация его сжигания кислородом обеспечивает уменьшение продолжительности плавки до 20-25% по сравнению с использованием для отопления печи смеси доменного и коксового газов Наибольшее уменьшение продолжительности плавки и повышение производительности мартеновских печей без увеличения их вместимости обеспечивает использование кислородного дутья для прямого окисления примесей металла.
При конструировании мартеновских печей стремятся максимально увеличить тепловоспринимающую площадь (площадь подины), следовательно, уменьшить толщину слоя металла (глубину ванны, которая для крупных печей не превышает 1,5-2,0 м). К тому же мартеновские печи обязательно должны иметь рабочие окна, расположенные непосредственно над ванной. В этих условиях продувка ванны кислородом возможна с ограниченной интенсивностью, максимально до 10-20 м3/(тч), тогда как в конвертерах она достигает 5-6 м3/(т мин) и более. Поэтому при одинаковой вместимости мартеновские печи имеют годовую производительность примерно в 10 раз меньшую. Низкая производительность является основным недостатком мартеновских печей. Кроме того, ремонт мартеновских печей требует больших материальных и трудовых затрат. Главное их достоинство - возможность ведения процесса при любом расходе чугуна в шихту. Другим преимуществом мартеновских печей является использование первичной энергии (тепла газообразного и жидкого топлив).
Тепловая работа и отопление мартеновских печей
В течение всех периодов плавки в печь подают топливо. Под действием тепла факела нагреваются кладка печи и шихта. Около 85— 90 % тепла от факела к ванне передается излучением и 5—15 % — конвекцией.
В соответствии с формулой Стефана — Больцмана, количество тепла Q, переданного холодной шихте излучением, составляет:
Q = δεп [(Тгор/100)4 - (Тхол/100)4],
где δ — коэффициент, учитывающий оптические свойства кладки и форму рабочего пространства;
εп — степень черноты пламени;
Тгор и Тхол — температуры факела (горячего) и шихты (холодной), К.
Таким образом, чем выше температура факела и степень черноты пламени, тем интенсивнее нагревается шихта и тем меньше времени затрачивается на плавку. Повышения температуры факела достигают улучшением степени нагрева воздуха и газа в регенераторах и обогащением воздуха кислородом; повышения степени черноты факела — карбюрацией пламени.
Двухатомные газы (О2, N2, Н2) практически лучепрозрачны для волн всех длин, трехатомные (СО2, Н2О, SO2) обладают некоторой излучательной способностью, однако степень черноты пламени горячего чистого газа составляет всего 0,1—0,2. Чтобы повысить степень черноты пламени, необходимо обеспечить в нем содержание твердых «черных» частичек (в первую очередь углеродистых).
Углеродистые частицы могут появиться в пламени в результате разложения углеводородов: СхНу = хCTB + уНгаз, а также при добавке к подаваемому в печь газу различных жидких или твердых топлив, богатых углеродом и сложными углеводородами (мазут, каменноугольный пек). Практически степень черноты пламени εп не должна быть ниже 0,5; в большинстве случаев она составляет 0,55—0,75.
При одной и той же характеристике факела разность [(Тгор/100)4 - (Тхол/100)4] тем выше, чем холоднее шихта. Наиболее низкая температура шихты наблюдается во время завалки и в начале периода плавления. Степень черноты холодной твердой шихты близка к единице (0,92—0,95). Поэтому в этот период передача тепла от факела к шихте максимальна, она настолько велика, что практически нет опасности оплавить огнеупоры, и в печь подают максимальное количество топлива.
По мере нагрева шихты температура ее Тхол возрастает, шихта раскаляется, покрывается шлаком и сама начинает отражать тепловые лучи, в результате чего условия поглощения тепла шихтой ухудшаются. Во избежание нагрева и оплавления огнеупора необходимо уменьшать подачу топлива.
Таким образом, подача топлива по ходу плавки меняется. Максимальной величины расход топлива достигает во время завалки и в начале периода плавления. Подаваемое в это время количество тепла называют максимальной нагрузкой. По мере прогрева шихты подачу топлива уменьшают и тепловая нагрузка падает. Тепловая работа мартеновской печи характеризуется средней тепловой нагрузкой или тепловой мощностью печи, которая представляет собой частное от деления общего расхода тепла на время плавки:
Расход тепла, кДж /Прод. плавки, ч = Тепловая мощность, кДж/ч
Средняя тепловая нагрузка в зависимости от тоннажа печи возрастает от 23,2 для 125-т печи до 69,9 МВт (252 кДж/ч) для 900-т печи. Максимальная тепловая нагрузка на 20 — 40 % выше средней.
Для характеристики топлива и условий его сжигания применяют коэффициент использования топлива (к. и. т.):
где QТ — теплота сгорания топлива; QПС — тепло уходящих газов.
Для мартеновских печей К.И.Т. составляет 0,50 — 0,55.
Удельный расход тепла (расход тепла топлива на 1 т стали) зависит от многих факторов и прежде всего от емкости печи. По мере увеличения садки печи уменьшаются относительные потери тепла на нагрев футеровки, на отвод тепла с охлаждающей водой и другие потери, в результате удельный расход тепла снижается с 840 для 10 –20т печей до 210 МДж/т для 900-т печей.
Топливо мартеновских печей
В России наиболее распространены в качестве топлива для мартеновских печей природный газ и мазут.
Мазут — наилучшее топливо для мартеновских печей, он дает яркосветящийся настильный высокотемпературный факел (калориметрическая температура горения мазута 2650 °С). Обычно мазут содержит 83-85 % С и 10—11 % Н2, остальное — влага, зола и сера. Содержание серы в мартеновских мазутах колеблется в пределах 0,5—0,7 %. Сернистые мазуты (3 % S и более) в мартеновском производстве применяют редко, так как сера из топлива переходит в металл и ухудшает его качество.
Перед подачей к форсункам мазут нагревают до 70—80 °С. Распыление мазута осуществляют сжатым воздухом, подаваемым под избыточным давлением 0,5—0,7 МПа или перегретым до 300—350 °С паром под избыточным давлением 1,1—1,2 МПа.
Природные газы основных месторождений России примерно на 95 % состоят из метана СН4. Факел природного газа малосветящийся и для повышения его светимости одновременно с газом в печь вводят некоторое количество (до 30—40 %) мазута. Добавка мазута не только повышает светимость факела, но и утяжеляет его, делает факел более настильным
Повышать светимость факела пламени природного газа можно также конвертированием, нагревая часть его при недостатке воздуха. Метан при нагревании разлагается («реформируется») с выделением большого количества сажистых частиц (СН4 = С + 2Н2), что обеспечивает получение светящегося факела
Природный газ является «удобным» топливом: он не содержит ядовитых веществ и вредных примесей, дешев, легко транспортируется Ряд мартеновских печей оборудован газо-кислородными горелками, при помощи которых газ вводят в печь через свод, и высокотемпературный факел природного газа, горящего в кислороде, направляют непосредственно на шихту. Скорость плавления шихты при этом значительно возрастает.
Калориметрическая температура горения холодных мазута и природного газа в нагретом воздухе составляет 2600—2650 °С, а фактическая ×0,7 = 1820-1850 °С. Таким образом, такие высококалорийные виды топлива, как мазут и природный газ, дают высокотемпературный факел без подогрева топлива (но с подогревом воздуха)
Шлакообразование и шлаковый режим мартеновской плавки
Для мартеновского процесса шлаковый режим имеет исключительно важное значение, так как в мартеновской печи нагрев металла происходит через слой шлака, т е шлак в мартеновской плавке участвует не только в рафинировании металла, но и в его нагреве.
Основные источники образования шлака следующие: продукты окисления примесей чугуна и скрапа (SiО2, MnO, Р2О5, Сг2О3 и др); продукты разъедания футеровки агрегата (MgO и СаО в основных печах и SiO2 в кислых); загрязнения, внесенные шихтой (песок, глина и др.), т. е. SiО2, A12O3; миксерный шлак; ржавчина, покрывающая скрап, т. е. Fe3O4, Fe2O3, FeO; добавочные материалы (известняк, известь, железная руда, агломерат, марганцевая руда и др.) — СаО, Fe2O3, MnO, SiO2, A12O3 и др.
Шлакообразование в мартеновской плавке начинается еще в период прогрева лома и получает большое развитие в начале плавления после заливки чугуна Первичный шлак, образующийся в период прогрева, состоит главным образом из оксидов железа и относительно меньшего количества оксидов марганца, кремния и кальция. По ходу плавления состав шлака непрерывно изменяется вследствие окисления примесей чугуна, всплывания из нижних слоев ванны ранее заваленных сыпучих материалов и удаления образовавшегося пенистого шлака.
Характер изменения содержания основных компонентов шлака по ходу плавки в мартеновском процессе примерно такой же, что в кислородно-конвертерном.
Особенности мартеновского процесса при высоком содержании чугуна в шихте
На первой стадии развития мартеновского процесса, когда печи имели малую вместимость (до 5-10 т), малую удельную нагрузку на подину (- 1 т/м2) и плавка в них длилась > 12 ч, кислорода, поступающего из газовой фазы печи, было достаточно для окислительного рафинирования металла даже при высоком содержании чугуна в шихте. По мере увеличения вместимости печей и улучшения их тепловой работы, кислорода, поступающего из газовой фазы через слой шлака в металл стало недостаточно, поэтому рафинирование, особенно окисление углерода, отставало от нагрева металла. Для устранения этого недостатка еще в 80-х годах XIX в. в качестве дополнительного источника кислорода начали применять железную руду. Этот вариант процесса получил название скрап-рудного.
Применение кислорода для интенсивной продувки мартеновской ванны кислородом, получившее распространение в 60-х годах XX в., позволило исключить твердые окислители из шихты или ограничиться малым расходом их. Так появился новый вариант мартеновского процесса, который называется скрап-кислородным процессом.
В настоящее время при переделе шихт с высоким расходом жидкого чугуна используется процесс, занимающий промежуточное положение между скрап-рудным и скрап-кислородным: недостаток кислорода частично компенсируется кислородом твердых окислителей, даваемых в завалку, и частично кислородом дутья.
Скрап-рудный процесс без продувки ванны кислородом
Варианты мартеновской плавки различаются в первую очередь способом достижения заданного содержания углерода в металле к моменту расплавления ванны, от которого зависят нормальное проведение периода доводки и выпуск металла заданного состава. При скрап-рудном процессе эта задача решается введением в период завалки определенного (оптимального для данных условий) количества твердого окислителя. В этом состоит основная особенность скрап-рудного процесса.
Расход твердого окислителя в период завалки определяется из баланса кислорода, в приходные статьи которого входят кислород поступающий из атмосферы печи, из окалины лома, из СО2 известняка; в расходные: кислород, расходуемый на окисление углерода и примесей чугуна, а также на образование оксидов железа шлака. Формула для расчета расхода руды, полученная из уравнения баланса кислорода, может быть представлена в виде:
Каждая из этих статей зависит от большого числа факторов, поэтому развернутая формула получается сложной и ею в производственных условиях можно пользоваться лишь в том случае, если расчеты выполняют при помощи ЭВМ.
Обычно расход твердого окислителя (руды, агломерата, окатышей) в период завалки колеблется в пределах 5-15%, при высокой доле (>70%) чугуна в шихте, достигая >20%.
Основными факторами, существенно влияющими на расход твердых окислителей в период завалки, являются следующие:
1. Доля чугуна в шихте и его химический состав. Чем выше количество чугуна в шихте и окисляющихся примесей в нем, тем больше расход кислорода на окисление примесей металла и на образование оксидов железа шлака, меньше поступление в ванну кислорода из газовой фазы печи и в виде окалины лома. При постоянстве других условий с увеличением расхода чугуна в шихту и содержания окисляющихся примесей в нем расход руды в период завалки увеличивается.
2. Вместимость или удельная нагрузка на подину печи, от которой зависит поступление кислорода из газовой фазы печи.
С увеличением удельной нагрузки на подину поступление кислорода из атмосферы печи уменьшается. Удельная нагрузка на подину возрастает при повышении вместимости печи. Следовательно, с увеличением вместимости печи при повышении удельной нагрузки на подину расход руды в период завалки возрастает. Но при увеличении удельной нагрузки на подину, если другие условия остаются постоянными, продолжительность периода плавления возрастает. Это вызывает повышение поступления кислорода из газовой фазы печи, т. е. уменьшение расхода руды в период завалки. Однако в целом с увеличением вместимости печи при постоянстве других условий расход руды в период завалки, как правило, возрастает.
3. Тепловая работа печи влияет на расход руды в завалку, изменяя поступление кислорода из атмосферы печи. Чем лучше тепловая работа печи, особенно при интенсификации сжигания топлива кислородом, тем выше удельное поступление кислорода из газовой фазы печи и меньше продолжительность плавления, т. е. с одной стороны происходит увеличение поступления кислорода (уменьшение расхода руды в период завалки), а с другой - уменьшение длительности периода плавления вызывает обратный эффект (увеличение расхода руды). Однако улучшение тепловой работы печи обычно вызывает уменьшение расхода руды в период завалки, т. е. наблюдается более существенное увеличение удельного поступления кислорода из газовой фазы печи, чем уменьшение продолжительности плавления.
4. Содержание углерода в металле по расплавлении. Чем больше оно, тем меньше расход кислорода на окисление углерода и расход руды в период завалки
Кроме указанных основных факторов, на расход твердых окислителей в период завалки влияют режим спуска шлака в период плавления и качество лома. Чем обильнее и раньше спускают шлак, тем больше расход кислорода на образование оксидов железа шлака и расход руды в период завалки. Чем мельче и окисленнее лом, тем больше количество кислорода поступает с окалиной и меньше расход руды в период завалки.
Скрап-кислородный процесс
Скрап-кислородный процесс отличается от скрап-рудного лишь тем, что в периоды плавления и доводки кислород твердых окислителей заменяется кислородом дутья. Эта замена при полном ее использовании позволяет увеличить производительность мартеновских печей в 1,5-2 раза. Преимущества скрап-кислородного варианта мартеновского процесса: во-первых, вдувание газообразного кислорода в ванну позволяет повысить в несколько раз скорость окислительного рафинирования металла; во-вторых, замена кислорода твердых окислителей, на разложение которых расходуется большое количество тепла, газообразным кислородом улучшает тепловой баланс плавки и приводит к снижению расхода топлива. Однако при вдувании кислорода в ванну обычно наблюдается некоторое снижение стойкости печи (увеличение расходов на огнеупоры и ремонтные работы) и неизбежно уменьшение выхода годной стали (вследствие почти полного исключения из шихты твердых окислителей и увеличения угара железа). Однако эти потери обычно меньше того выигрыша, который достигается при уменьшении продолжительности плавки (повышения производительности печи) и снижении расхода топлива.
Кроме того, при скрап-кислородном процессе гораздо проще управление реакцией окисления углерода, в частности легче достижение заданного содержания углерода в металле по расплавлении. Это объясняется тем, что расход вдуваемого в ванну кислорода, определяющий остаточное содержание углерода в металле, можно легко изменить (увеличить или уменьшить) по ходу процесса, например, взяв пробу металла и определив в нем содержание углерода до расплавления ванны. Такая корректировка невозможна при скрап-рудном процессе, так как все расчетное количество твердого окислителя присаживается в ванну в начале процесса - в период завалки сыпучих материалов.
Таким образом, скрап-кислородный процесс является не только самым высокопроизводительным способом мартеновского передела шихт с высоким содержанием чугуна, но и наиболее легко управляемым процессом.
Продувка ванны кислородом, являющаяся основной отличительной особенностью технологии скрап-кислородного мартеновского процесса, обычно начинается с момента заливки чугуна и ведется до начала чистого кипения, т. е. в течение главных по продолжительности и значению технологических периодов (операций). Основными параметрами продувочного периода плавки являются удельный расход дутья (Wд, м3/т), удельная интенсивность продувки [iо2 ,м3/(т-ч)] и продолжительность продувки (τп , ч). Они между собой связаны:
Удельный расход кислорода определяется расчетом по балансу кислорода, учитывающего коэффициент усвоения кислорода (обычно составляет 0,7-0,9, но может быть > 1, если во время продувки ванны имеет место интенсивное поглощение кислорода из атмосферы печи).
Удельный расход кислорода, вдуваемого в ванну в период плавления в основном зависит от доли чугуна в шихте, его химического состава и содержания углерода в металле по расплавлении. Кроме того, если плавку ведут с введением в период завалки твердого окислителя, расход кислорода зависит также от расхода последнего.
Обычно при скрап-кислородном процессе расход кислорода на продувку ванны в период плавления колеблется в пределах 15-25 м3/т, в период доводки 5-10 м3/т.
Удельная интенсивность продувки. Она обычно изменяется в пределах 5-20 м3/(т ч) в зависимости от конкретных условий работы цеха (печи). Практика показывает, что продувка с удельной интенсивностью < 5 м3/(т-ч) не оправдывает затраты на кислород и его подачу в ванну, сооружение газоочистки и т. п. При 20 м3/(т-ч) производительность мартеновских печей можно увеличить в два раза и более.
Однако полное использование этих возможностей интенсификации мартеновского процесса ограничено возможностями по кислороду и шихтоподаче. Кроме того, чем выше удельная интенсивность продувки, тем больше должна быть доля жидкого чугуна в шихте. Это объясняется тем, что скорость обезуглероживания увеличивается в большей степени, чем скорость нагрева металла, поэтому относительное изменение температуры ванны уменьшится, т. е. на нагрев ванны на одну и ту же величину требуется больше углерода. Поскольку углерод в ванну вносится чугуном, то его расход должен быть увеличен.
В связи с этим скрап-кислородным процессом работает только часть мартеновских печей, обычно имея удельную интенсивность продувки 6-8, редко 10 м3/(т ч). При этом производительность печей увеличивается на 25-35%, редко выше, а удельный расход кислорода для продувки составляет 15-25 м3/т.
Синхронизация процессов обезуглероживания и нагрева металла в скрап-кислородном мартеновском процессе обеспечивается гораздо легче, чем в конвертерных процессах благодаря тому, что, во-первых, проще контролировать текущие значения содержания углерода и температуры, во-вторых, имеется регулируемый подвод тепла извне.
Показатели и перспективы мартеновского производства стали
Плавка стали в мартеновских печах отличается от обычной конвертерной необходимостью подвода тепла извне и более высоким расходом лома в шихту, что обуславливает меньшую общую энергоемкость. Для оценки ресурсоемкости мартеновского процесса рассмотрим материальный и тепловой балансы скрап-рудного и скрап-процесса при выплавке углеродистой стали.
Материальный баланс мартеновского процесса отличается от конвертерного не только меньшим расходом чугуна, но и металлошихтыв целом. Например, мартеновский скрап-процесс может быть нормально проведен при расходе чугуна 300 кг/т, тогда как для обычной конвертерной плавки требуется не менее 800 кг/т. Общий расход металлошихты в мартеновском процессе обычно 1125-1135 кг/т стали, тогда как в конвертерном процессе на 10-15 кг/т больше.
Тепловой баланс. В мартеновском процессе его составление имеет важное значение прежде всего для определения недостатка тепла на процесс и необходимого расхода топлива. Удельный дефицит тепла в мартеновских процессах может изменяться в очень широких пределах: 600-1500 МДж/т. Обычно коэффициент использования топлива (к.и.т.) составляет 22-27%, поэтому расход условного топлива колеблется в пределах 80-140 кг/т для скрап-рудного и 160-220 кг/т для скрап-процесса. Минимальный расход топлива наблюдается при высоком расходе жидкого чугуна и продувке ванны кислородом (кислородный мартеновский процесс), максимальныйпри самом низком расходе твердого чугуна в скрап-процессе. Однако общая энергоемкость скрап-процесса с учетом прошлых затрат значительно меньше, чем скрап-рудного.
Удельный расход топлива в мартеновском процессе, кроме расхода чугуна и его физического состояния, зависит от вместимости печи и продолжительности плавки. Чем больше вместимость печи, тем меньше удельный расход топлива. При прочих равных условиях, чем меньше продолжительность плавки, тем меньше расход топлива.
Мартеновский процесс сыграл огромную роль в производстве стали в XIX-XX веках. Однако в современных условиях у него можно отметить ряд недостатков. Во-первых, низкая производительность, во-вторых, большие трудности в синхронизации плавки стали в мартеновской печи и разливки стали на МНЛЗ, в-третьих, большой расход огнеупорных материалов и доля ручного труда при ремонтах печей, в-четвертых, более тяжелые условия труда.
По этим причинам мартеновский процесс неуклонно вытесняют кислородно-конвертерный и электросталеплавильный. В значительных объемах мартеновское производство сохранилось лишь в Китае, России и Украине, что объясняется недостатком финансовых средств при модернизации сталеплавильного производства.
Сущность работы двухванных сталеплавильных агрегатов
Практика интенсивной продувки мартеновской ванны кислородом показала, что не достигается теоретически ожидаемое улучшение теплового баланса и уменьшение расхода топлива. Основная причина этого несоответствия заключается в неудовлетворительном использовании тепла реакции окисления СО, выделяющегося из ванны. При нормальном ходе обычного мартеновского процесса СО полностью окисляется до СО2 над ванной, тепло этой реакции используется для нагрева ванны, причем лучше, чем тепло топлива. При интенсивной продувке мартеновской ванны кислородом выделяется такое большое количество СО, которое полностью окислить до СО2 в рабочем пространстве не удается, и использование тепла этой реакции для нагрева ванны снижается, ухудшая тепловой баланс плавки.
Отрицательным последствием неполного окисления СО до СО2 в рабочем пространстве также является неизбежный перегрев нижнего строения печи, в первую очередь насадок регенераторов, и быстрый выход их из строя.
Вследствие указанных недостатков мартеновской печи необходимо было создать новый сталеплавильный агрегат, в котором процесс можно было проводить с более интенсивной продувкой, чем в мартеновских печах, максимально используя при этом тепло дожигания СО до СО2. По своим габаритам агрегат должен быть таким, чтобы его можно было поставить вместо мартеновских печей. Этим требованиям соответствует двухванная печь (см. рисунок 10). Рабочее пространство имеет две ванны, каждая из которых снабжена тремя фурмами для подачи кислорода и шестью газо-кислородными горелками, расположенными в своде и предназначенными для отопления печи.
1 - кислородные фурмы, 2 - сводовые газо-кислородные горелки
Рисунок 10 – Схема устройства рабочего пространства двухванной печи
В каждой ванне плавка ведется со смещением примерно на половину продолжительности, т. е. конец плавки в одной ванне соответствует середине плавки в другой. В первой ванне, в которой процесс закончен, осуществляются выпуск плавки, заправка ванны, завалка твердых шихтовых материалов и их прогрев главным образом теплом реакции окисления выделяющегося из второй ванны СО до СО2 и частично теплом топлива, подаваемого через сводовые горелки. В это время во второй ванне производится продувка металла кислородом. Образующийся при этом СО частично окисляется до СО2 над второй ванной, но главным образом при переходе в первую ванну. Использование тепла этой реакции оказывается эффективным, так как, во-первых, происходит полное окисление СО до СО2, во-вторых, тепло воспринимают холодные твердые материалы.
Благодаря этому, хотя процесс в двухванных печах имеет во много раз большую продолжительность (3—4 ч), чем в кислородных конвертерах (15- 20 мин), в двухванных печах возможна переработка большего количества лома, чем в конвертерах. Так, плавку в двухванных печах можно вести с использованием до 35% лома, расходуя при этом топлива всего 10-15 кг/т, причем в основном на поддержание печи в рабочем состоянии во время ее заправки.
Изменение направления движения газов (перекидка) производится один раз в середине плавки. Газы уходят из печи со стороны ванны, где идет первая половина плавки, которую часто называют холодным периодом.
Основной особенностью работы двухванной печи является высокоэффективное использование тепла окисления до СО2 оксида углерода СО, выделяющегося при интенсивной продувке металла кислородом.
Внешне двухванная печь мало отличается от мартеновской. Первая половина плавки (заправка печи, завалка и прогрев шихты, заливка чугуна) проводится, как в мартеновском процессе, но только за более короткое время. В течение первой половины плавки происходит интенсивный нагрев твердой шихты теплом, подводимым извне: теплом окисления СО до СО2, образующегося в соседней ванне, и теплом топлива, т. е. ванна в течение первой половины плавки отапливается, что и дает основание агрегат называть печью, а не конвертером.
Вторая половина плавки — окислительное рафинирование, проводится, как в кислородном конвертере, но с меньшей интенсивностью продувки. Удельная интенсивность продувки в двухванных печах обычно составляет 0,4-0,6 м3/(т-мин) или 25-35 м3/(тч). Она в первую очередь ограничивается пропускной способностью дымового тракта печи, а также продолжительностью первой половины плавки (синхронность работы двух ванн). При увеличении пропускной способности дымового тракта и сокращении продолжительности первых операций (заправки и завалки) возможно повышение интенсивности продувки до >1 м3/(т-мин).
Технология плавки в двухванных сталеплавильных агрегатах
Процесс в двухванных печах по существу является определенным сочетанием отдельных элементов технологии плавки стали в мартеновских печах и кислородных конвертерах. Однако этот процесс отличается от мартеновского и конвертерного тем, что для нормальной работы агрегата необходима постоянная синхронность работы обеих ванн, требуется строгое соблюдение графика проведения операций в каждой ванне. Примерный график совмещения основных операций и их продолжительности приведен на рисунке 11.
Рисунок 11 – График совмещения операций при плавке стали в двухванных печа и примерная их продолжительность (% от общей длительности плавки)
На двухванных печах (садка каждой ванны 250-300 т) общая продолжительность цикла в одной ванне 3-4 ч, т. е. плавки выпускаются из печи с промежутками в 1,5-2 ч.
Заправка печи проводится для восстановления изношенных за время плавки участков наварки ванны, передней, задней и разделительной стенок. Поскольку ванна двухванных печей более глубокая, углы наклона стенок и откосов больше, чем у мартеновских печей, то ее износ более интенсивный. В связи с этим продолжительность заправки двухванных печей несколько больше продолжительности заправки мартеновских печей.
Завалка шихтовых материалов. Твердую часть шихтовых материалов обычно составляют лом и флюсы (главным образом известь). Чаще все количество флюсов, расходуемых на плавку, вводят во время завалки, так как присадка части по ходу плавки (после расплавления ванны) требует прекращения продувки и удлиняет этот период. Твердые окислители не применяют или применяют в ограниченном количестве, чтобы уменьшить эндотермический процесс окисления углерода кислородом оксидов железа. Этим достигается повышение расхода лома в шихту.
Прогрев шихты (лома) в двухванных печах осуществляется преимущественно теплом реакции окисления СО до СО2. Прогрев лома тем лучше, чем больше продолжительность этого периода, поэтому если предыдущий период - завалка затягивается, то на нагрев остается меньше времени. Температура нагрева лома, по крайней мере верхних его слоев, должна быть не ниже температуры затвердевания чугуна (1100-1150°С). При заливке чугуна на недостаточно прогретую шихту происходит "закозление" его, и период продувки начинается ненормально: вдуваемый кислород плохо усваивается ванной, реакции окисления примесей, в том числе и углерода, протекают медленно; преимущественно окисляется железо, и в шлаке накапливается большое количество оксидов железа. Это приводит, во-первых, к удлинению второй половины плавки и снижению производительности печи; во-вторых, может вызвать выброс шлака и металла из печи вследствие возможного скачкообразного роста скорости окисления углерода кислородом оксидов железа, накопленным в шлаке в начале продувки, когда металл и шлак нагреты и приобретают нормальную жидкоподвижность. Перегрев лома также недопустим, так как при перегреве в ванне накапливается большое количество жидких оксидов железа. При заливке чугуна эти оксиды железа вызывают бурное окисление углерода чугуна, что тоже может привести к выбросу металла и шлака из печи. Вследствие кратковременности (0,5-0,7 ч) и непослойного прогрева среднемассовая температура шихты обычно составляет 700-800°С, что ограничивает расход лома.
Заливка чугуна в двухванных печах является периодом, соответствующим середине плавки. Продолжительность периода заливки чугуна определяется организационными возможностями. Обычно чугун к двухванным печам подают в двух ковшах, поэтому продолжительность его заливки значительно больше, чем в конвертерных цехах, и обычно достигает >25 мин. Кроме того, в конвертер чугун заливают на холодный лом, и нет опасности бурного окисления углерода, поэтому допустима высокая скорость заливки. В двухванных печах лом в ванне перед заливкой чугуна прогрет и имеется определенное количество жидких оксидов железа, поэтому заливку чугуна необходимо производить осторожно с малой скоростью.
Продувка ванны кислородом, основная технологическая операция плавки, начинается с момента заливки чугуна и, как правило, ведется без остановки до достижения заданного содержания углерода. Режим продувки характеризуется интенсивностью подачи кислорода и положением фурм.
Удельная интенсивность подачи дутья в двухванных печах обычно колеблется в пределах 0,4-0,6 м3/(т мин), но может достигать > 1 м3/(т мин). По ходу плавки, как правило, интенсивность подачи дутья не изменяют. При нормальной продувке фурмы опускают в шлак, стараясь держать их концы на границе шлак-металл, в этом случае улучшается усвоение кислорода, уменьшается разбрызгивание шлака и металла, нет опасности прогара фурмы. Однако в отдельные моменты плавки одну или две фурмы поднимают выше уровня шлака и осуществляют поверхностную продувку. Это делается при недостаточном нагреве металла для окисления СО до СО2 над ванной и усиления нагрева ее теплом этой реакции. Кроме того, поверхностная продувка используется для ускорения шлакообразования, так как при этом, во-первых, улучшается нагрев и, во-вторых, повышается содержание оксидов железа в шлаке, что ускоряет растворение извести в нем, и теплота образования оксидов железа улучшает нагрев ванны.
В двухванных печах продувку металла можно вести не техническим (чистота 99,5%), а технологическим (чистота 95%) кислородом. Это объясняется, во-первых, тем, что в зоне реакции температура несколько ниже, чем в конвертерах вследствие меньшего поступления кислорода через одну фурму; во-вторых в двухванных печах ввиду относительно большой площади ванны получает значительное развитие удаление азота из металла в пузырях СО, выделяющихся из ванны вне зоны вдувания кислорода.
Шлаковый режим. Сходство шлакового режима процессов в двухванных и мартеновских печах в первую очередь заключается в возможности спуска первичного шлака по мере его образования. Это позволяет при необходимости обеспечить высокую степень дефосфорации металла при меньшем расходе флюсов. Кроме того, спуск первичного шлака улучшает десульфурацию, так как, во-первых, первичный шлак обладает определенной серопоглотательной способностью и уносит серу; во-вторых, удаление значительного количества SiO2 с первичным шлаком позволяет получить конечный шлак с меньшим содержанием SiO2, обладающий повышенной серопоглотительной способностью. Основное различие в шлаковом режиме состоит в том, что в двухванных печах нет необходимости в спуске первичного шлака для улучшения нагрева ванны, так как во время продувки ванна нагревается в основном теплом экзотермических реакций окисления компонентов металла, а не теплом факела, как в мартеновских печах.
Шлаковый режим двухванной печи имеет некоторые недостатки. Во-первых, в шлаке двухванных печей содержание МgО всегда выше, чем в конвертерном шлаке, и составляет >10% (большая продолжительность плавки и более реакционный шлак), в связи с чем фосфоро- и серопоглотительная способность ниже. Во-вторых, шлак в двухванных печах в основном нагревается от металла, поэтому повышение его основности выше 3-3,5 невозможно. При более высокой основности шлак получается гетерогенным, физически и особенно химически малоактивным. По содержанию основных компонентов (CaO, SiO2, FeO) формирование шлака в двухванных печах подчиняется закономерностям, характерным для кислородно-конвертерного процесса.
Режим окисления углерода в основном определяется дутьевым режимом. В течение первых 2/3 продувки об остаточном содержании углерода в металле судят по расходу кислорода. По достижении расчетного остаточного содержания углерода (1,0-1,5%) отбирают пробу металла и измеряют его температуру. При нормальном ходе плавки к этому моменту лом успевает полностью раствориться, и весь металл находится в жидком состоянии. Рафинирование металла в основном сводится к окислению избыточного количества углерода, причем эта реакция практически до конца плавки остается единственным источником тепла для нагрева ванны.
После расплавления ванны должна быть обеспечена синхронность проведения процессов окисления углерода и нагрева ванны. Это является важнейшей задачей, решаемой во время продувки. Ее решение упрощается, если возникает перегрев ванны, так как перегрев легко снимается присадкой твердого окислителя. Если обнаруживается недогрев, то необходимо обеспечить большее дожигание СО над продуваемой ванной. Для этого одну или две фурмы поднимают, располагая конец над ванной и расходуя часть кислорода на окисление СО. При этом также происходит некоторое окисление железа, так как, когда фурмы находятся над шлаком, содержание оксидов железа в нем повышается.
Указанным методом можно устранить небольшие недогревы. Если недогрев большой, то необходимо перейти к выплавке стали с возможно низким содержанием углерода, или доливать чугун.
При достижении заданных значений содержания углерода в металле и температуры его нагрева продувку прекращают.
Окисленность металла в двухванных печах не отличается от окисленности его в кислородных конвертерах, если конечный шлак нормальный, гомогенный и не переокислен. По содержанию азота при использовании технологического кислорода металл двухванных печей не отличается от конвертерного и мартеновского, а по содержанию водорода лучше мартеновского, поэтому при нормальном дутьевом и шлаковом режимах плавки сталь, полученная в двухванных печах, обычно не уступает мартеновской и кислородно-конвертерной.
Выпуск плавки может быть сразу после прекращения продувки или через некоторое время после 5-10 мин выдержки для снятия избыточного содержания оксидов железа в шлаке. Как показали исследования на ММК и других заводах, для снятия переокисленности шлака достаточно выдержки ~ 10 мин. Поскольку продолжительность выпуска плавки составляет - 10 мин, то выпуск плавки, сразу после окончания продувки нельзя рассматривать как ошибочный технологический прием.
Раскисление и легирование металла, как при кислородно-конвертерном процессе, проводят исключительно в ковше.
Перспективы применения двухванных печей
Двухванная печь имеет существенные преимущества перед мартеновской печью: двухванная печь лучше приспособлена для продувки кислородом, в связи с чем возможно достижение высокой производительности при меньшем расходе топлива. Так, двухванные печи с вместимостью одной ванны 250-300 т имеют годовую производительность 1,0-1,5 млн. т и расход топлива 10-20 кг/т. На мартеновских печах, работающих в тех же цехах и имеющих садку 500-600 т, производство в два и более раз меньше, расход топлива выше в пять раз и более. Простота конструкции (отсутствие регенераторов) двухванных печей уменьшает объем ремонтных работ (причем самых тяжелых) и снижает расход огнеупоров. Расход кислорода на двухванных печах выше, чем на мартеновских, и обычно составляет 70-80 м3/т. Однако благодаря меньшему расходу топлива и огнеупоров, меньшему объему ремонтных работ себестоимость стали, выплавленной в двухванных печах, обычно несколько ниже себестоимости мартеновской стали.
По производительности двухванные печи уступают кислородным конвертерам. Но установка кислородных конвертеров в мартеновских цехах существенно повышает стоимость реконструкции, усложняет эксплуатацию. Поэтому в 70-е годы в СССР и за рубежом на ряде заводов часть мартеновских печей заменили двухванными.
Однако, как показала практика, двухванные печи по сравнению с мартеновскими хотя и имеют явное преимущество по производительности, но по возможности переработки лома они уступают мартеновским печам. По этому показателю двухванные печи стоят ближе к кислородным конвертерам, т.е требуют высокого расхода чугуна, вводимого в шихту. Кроме того, качество выплавляемой стали и условия труда у двухванных печей хуже, чем у мартеновских печей и конвертеров. К 2000 году примерно половина двухванных агрегатов была остановлена в связи с развитием кислородно-конвертерного производства.