Машиностроение и механика

  • Increase font size
  • Default font size
  • Decrease font size

Металлургия стали: основные реакции сталеплавильных процессов, конвертерное производство стали, выплавка стали в подовых сталеплавильных агрегатах

Article Index
Металлургия стали: основные реакции сталеплавильных процессов, конвертерное производство стали, выплавка стали в подовых сталеплавильных агрегатах
Сталеплавильные шлаки
Хими­ческие свойства шлаков
Основные реакции сталеплавильных процессов
Основы синхронизации процессов обезуглероживания и нагрева металла
Окисление и восстановление кремния
Окисление и восстановление марганца
Окисление и восстановление фосфора
Удаление серы (десульфурация металла)
Конвертерное производство стали
Устройство кислородного конвертера с верхней продувкой
Шихтовые материалы и требования к ним
Технология кислородно-конвертерной плавки
Дутьевой режим плавки
Поведение составляющих чугуна при продувке
Шлакообразование и требования к шлаку
Поведение железа и выход годного металла
Материальный и тепловой баланс кислородно-конвертерной плавки
Переработка лома в конвертерах
Конвертерные процессы с донной продувкой кислородом
Поведение примесей
Сравнение процессов с верхней и донной продувкой кислородом
Конвертерные процессы с комбинированной продувкой
Выплавка стали в подовых сталеплавильных агрегатах
Устройство мартеновской печи
Конструкция отдельных элементов мартеновской печи
Основные особенности и разновидности мартеновского процесса
Основные периоды мартеновской плавки и их значение
Тепловая работа и отопление мартеновских печей
Шлакообразование и шлаковый режим мартеновской плавки
Скрап-кислородный процесс
Показатели и перспективы мартеновского производства стали
Сущность работы двухванных сталеплавильных агрегатов
Технология плавки в двухванных сталеплавильных агрегатах
Перспективы применения двухванных печей
All Pages

Металлургия стали


Основные этапы развития сталеплавильного производства

Металлургия стали как производство возникла около 3,5 тыс. лет назад в северной Африке (Египет, Сирия). В процессе развития сталеплавильнго производства основные агрегаты для выплавки стали и технология производства претерпели значительные изменения: прямое получение железа из руды в сыродутных горнах с получением кричного железа, получение стали окислительным плавлением чугуна на поду специ­альной пудлинговой печи (от англ. puddle — месить, перемешивать), тигельный процесс, конвертерный и мартеновский процессы, электрометаллургия стали, переплавные процессы (вакуумно-индукционный переплав (ВИП), вакуумно-дуговой (ВДП), электрошла­ковый (ЭШП), электронно-лучевой (ЭЛП), плазменно-дуговой ПДП и др.), внепечная обработка стали.

В настоящее время мировое производство стали достигает примерно 750 млн. т. основными способами производства являются кислородно-конвертерный ( 50%), электросталеплавильный (~20%) и мартеновский (<30%); ~ 2% ста­ли производят в электропечах с использованием материалов, полученных на уста­новках прямого восстановления.

При мартеновском, конвертерном и электродуговом способах производства стали получение металла осуществляется в две стадии: 1) восстановление в домен­ных печах железа из руды, т.е. получение чугуна; 2) окисление в сталеплавильных агрегатах углерода, кремния, марганца, фосфора, удаление серы, т.е. получение из чугуна стали требуемого состава.

Классификация сталей

Полученные тем или иным способом стали чрезвычайно разнооб­разны по своим свойствам и составу. Их классифицируют по способу производства, назначению, качеству, химическому составу, харак­теру застывания в изложницах и строению получающегося слитка.

По способу производства сталь может быть тигельной, кислой и основной мартеновской, бессемеровской, томасовской, кон­вертерной, электросталью, электрошлакового переплава и получен­ной другими способами.

По назначению можно выделить следующие основные группы сталей:

1. Конструкционная сталь, которую применяют при изготовле­нии различных металлоконструкций (для строительства здании, мостов, различных машин и т. п.).

2. Топочная и котельная сталь — низкоуглеродистая сталь, при­меняемая для изготовления паровых котлов и топок.

3. Сталь для железнодорожного транспорта — рельсовая марте­новская и конвертерная сталь, осевая сталь, сталь для бандажей железнодорожных колес.

4. Подшипниковая сталь служит материалом для изготовления шариковых и роликовых подшипников.

5. Инструментальная сталь применяется для изготовления раз­личных инструментов, резцов, валков прокатных станов, деталей кузнечного и штамповочного оборудования.

Кроме указанных, имеется еще ряд групп сталей, назначение которых видно из самого их названия: рессорно-пружинные, электро­технические, трансформаторные, динамные, нержавеющие, орудий­ные, снарядные, броневые, трубные стали и др.

По качеству стали обычно делят на следующие группы: сталь обыкновенного качества, качественную и высококачественную. Раз­личия между этими группами заключаются в допускаемом содержа­нии вредных примесей (в первую очередь серы и фосфора), а также в особых требованиях по содержанию неметаллических включений. Например, в сталях обыкновенного качества содержание серы и фос­фора не должно превышать 0,055—0,060, в качественных сталях — не более 0,040—0,045, в высококачественных — не более 0,020— 0,030 % (в некоторых случаях содержание серы и фосфора допу­скается в очень низких пределах: 0,010 и даже 0,005 %).

По химическому составу различают:

1) сталь с низким содержанием примесей, или так называе­мое технически чистое железо, так как суммарное содержание других элементов составляет всего лишь около 0,1%;

2) Углеродистая сталь сталь, не содержащая легирующих компонентов (кроме углерода). В зависимости от назначения эта сталь подразделяется на низкоуглеродистую (0.25 % С); среднеуглеродистую (0,25- 0,60 % С); высокоуглеродистую (0,6-2,0 % С).

3) Легированная сталь — сталь, содержащая, помимо углерода, другие легирующие компоненты, которые в свою очередь делят на низколегированные стали (до 10 % ЛЭ); средне (10-20% ЛЭ) и высоколегированные стали (более 20%)..

Для легированных сталей применяются следующие буквен­ные обозначения элементов: углерод – У; марганец — Г; кремний — С; ни­кель — Н; вольфрам — В; молибден — М; хром — X; ванадий — Ф; алюминий — Ю; титан — Т; медь — Д;

В обозначении легированных марок стали применяют в определенных сочетаниях цифры и буквы. Принцип маркировки стали: цифры до букв означают содер­жание углерода в сотых долях процента (если менее 0,08 %, то 0), буквы — наименование легирующего элемента, а цифра после букв—содержание леги­рующего элемента в процентах (если оно превышает 1,5 %).

Марки конструкционной стали обыкновенного качества обозначают следующим образом: Ст0, Ст1, Ст2 и т.д. Обозначениями качествен­ных конструкционных сталей служат: 10, 20, 45 и т. д. Качественная углеродистая сталь обозна­чается У7, У8, ..., У12, где буква У — углеродистая, а цифра — содер­жание углерода в десятых долях процента.

Стали специального назначения обозначаются следующим образом: А - автоматная сталь, Р - быстрорежущая инструментальная сталь, Ш - подшипниковые стали, Э - электротехнические стали, Е - для посто­янных магнитов, ЭП - экспериментальные стали.

В зависимости от микроструктуры стали бывают перлитные, мартенситные, аустенитные или ферритные.

По степени раскисленности: спокойные, кипя­щие и полуспокойные. Поведение металла в изложницах зависит от степени его раскисленности — чем полнее раскислена сталь (удален кислород), тем спокойнее кристаллизуется слиток (раскислением стали называют процесс удаления из металла растворенного в нем кислорода). Так, например, в результате обильного газовыделения кипящая сталь при кристаллизации в изложнице кипит (отсюда название стали). Наоборот, спокойная сталь кристаллизуется без видимых эффектов, спокойно.


Сталеплавильные шлаки


Шлак, представляющий собой сплав оксидов, сульфидов, нитридов, фосфидов, карбидов и др. соединений и является неизбежным побочным продук­том любого современного способа производства стали в открытых агрегатах.

Образование шлака обусловлено:

1. во-первых, с обязательным окислением элементов металлической фазы во время плавки и образованием при этом различных нелетучих (шлакообразующих) оксидов, имеющих меньшую плотность, чем металл, и собирающихся на поверхности металла;

2. во-вторых, с неизбежным разрушением футеровки в условиях высоких температур под дей­ствием оксидов, образующихся в результате окисления компонен­тов металлической фазы.

3. в-третьих, попаданием в ванну оксидов извне с неметаллическими шихтовыми материалами (флюсов и твердых окислителей), загрязне­ниями (мусора) лома и миксерного или доменного шлака.

Источники образования шлака

1. Продукты окисления примесей чугуна и лома — кремния, марганца, фосфора, серы, хрома и других элементов (SiO2, MnO, Р2О5, FeS, MnS, Сr2О3 и др.).

2. Продукты разрушения футеровки агрегата — при разъедании основной футеровки (доломита, магнезита) в шлак переходят СаО, MgO, при разъедании кислой (динас) — SiO2.

3. Загрязнения, внесенные шихтой (песок, глина, миксерный шлак и т.п.), —SiO2, Аl2О3, MnS и т.п.

4. Ржавчина, покрывающая заваливаемый в сталеплавильные агрегаты лом, — оксиды железа.

5. Добавочные материалы и окислители (известняк, известь, боксит, плавиковый шпат, железная и марганцевая руды и т.п.) — СаО, Аl2О3, SiO2, FeO, Fe2О3, MnO, CaF2 и т. п.

Роль шлаков противоречива, поскольку она может быть как полезной (положительной), так и вредной (отрицательной).

Положительное значение шлаков состоит в способности погло­щать фосфор (дефосфорация) и серу (десульфурация) из метал­ла. Такими свойствами обладают только основные шлаки, в кото­рых преобладает содержание основных оксидов, прежде всего СаО.

В подовых процессах, т. е. в процессах, осуществляемых в мартеновских, двухванных и электродуговых печах, положительная роль шлаков выражается также в защите металла от поступающих из атмосферы печи вредных примесей, главным образом газов.

Отрицательное значение шлаков в основном выражается в следующем: 1) разрушающем действии на футеровку агрегата; 2) увеличении потери (угара) полезных примесей в процессе окис­лительного рафинирования, а также раскисления и легирования; 3) увеличении потери железа в виде оксидов и корольков, содер­жащихся в шлаке. Указанные отрицательные действия шлаков на ход и результаты плавки в той или иной степени проявляются в любых сталеплавильных процессах. Установление оптимального шлакового режима плавки должно означать обеспечение возможно большего проявления положительной их роли и меньшего - отри­цательной.

Состав шлаков

Строение шлаков и их основные физико-химические свойства определяются содержанием в них различных оксидов, которое услов­но принято называть химическим составом шлака.

Шлаки, в которых преобладают основные окислы (CaO, MgO, MnO, FeO), называют основными шлаками, а шлаки, в которых преобладают кислотные окислы (SiO2, P2О5) кислыми шлаками. В зависимости от характера шлаков и процессы называют основными или кислыми (например, основной мартеновский процесс, кислый мар­теновский процесс). Если футе­ровка выполнена из кислого (кремнеземистого) материала, то шлак должен быть также кислым, т. е. главным компонентом должен быть SiO2, иначе разрушающее действие шлака на футеровку может оказаться очень значительным. В агрегатах, имеющих основную (магнезитовую или доломитовую) футеров­ку, плавку можно вести только под основными шлаками, глав­ным компонентом которых является CaO.


Хими­ческие свойства шлаков


1. Основность шлака

Существует множество показателей характеризующих основность шлака, но любая из них прежде всего должна позво­лять оценить фосфоро- и серопоглотительную способность шлака.

При переделе малофосфористых чугунов за показатель основности шлака принимают отношение: В= (CaO)/(SiO2), при переделе высокофосфористых чугунов - В = (CaO)/(SiO2 + P2О5).

Шлаки, в которых отношение (CaO/SiO2) < 1,6 называют низкоосновными; у шлаков средней основ­ности CaO/SiO2 == 1,6—2,5; у высокоосновных шлаков (CaO/SiO2) > 2,5.

Кислые шлаки состоят главным образом из кислотного окисла SiО2 и некоторого количества таких основных окислов, как FeO и MnO. Составы кислых шлаков характеризуются степенью их кис­лотности (или просто «кислотностью»), выражаемой обычно отноше­нием SiО2/(FeO + MnO).

2. Окисленность шлака - это способность его оказывать окислительное воздействие на метал­лическую фазу, передавая кислород в эту фазу.

В общем случае окислительная способ­ность шлака находится в сложной зависимости от содержания в нем оксидов железа (FeO), его основности (В), концентрации уг­лерода в металле ([С]) и температуры ванны. Окислительная способность шлака возрастает по мере повышения содержания оксидов железа в нем, концентрации угле­рода в металле и температуры и снижения основности шлака до 1,7-1,8.

В качестве меры окисленности шлака в производственных условиях обычно принимают или содер­жание (в %) в шлаке FeO, или содержащуюся в нем сумму FeO + Fе2О3, или содержание в шлаке железа.

Физические свойства шлаков определяют поведение шлаков в процессе плавки


clip_image002

1. Температура плавления шлаков

I – основной процесс;

II – кислый процесс

Рисунок 1 – Зависимость температуры плавления мартеновских шлаков от содержания в них SiO2

Температура плавления шлаков (шлаки имеют многокомпонентный состав и плавятся в интервале температур, т.е. имеют начало и конец плавления. Здесь и в дальней­шем имеется в виду температура конца плавления шлаков) является их основной физичес­кой характеристикой, определяющей другие важные физико-химичес­кие свойства. Это связано с тем, что в любом сталеплавильном аг­регате в каждый период плавки температура металла и шлака изме­няется в узких пределах, поэтому перегрев шлаков выше температу­ры плавления в основном определяется температурой плавления. Степень перегрева шлака определяет поведение шлака, его физи­ческие свойства (вязкость, электрическую проводимость) и химичес­кую активность (рафинирующее действие на металл, поглощение газов из газовой фазы и т.д.). На температуру плавления шлака может влиять любой его компонент. Однако, как показывают исследования, для обычных окислительных шлаков первостепенное значение имеет изменение содержания SiO2 (см. рисунок 1).

Наиболее легкоплавкие шлаки (tпл = 1200-1300°С) содержат 30-40% SiO2. Как снижение, так и увеличение содержания SiO2 в шлаке выше указанных пределов приводит к повышению температуры плав­ления.

Содержание SiO2 равное 30-40%, обычно наблюдается в начале плавки как в основных, так и в кислых процессах. По ходу плавки в основных процессах содержание SiO2 снижается, а в кислых процессах повышается, поэтому температура плавления шлаков по ходу плавки обычно повышается.

Обычно для разжижения основных шлаков используют добавки боксита (основные составляющие Al2O3, SiO2, Fе2О3), пла­викового шпата (CaF2), боя шамотного кирпича (SiO2, Al2O3), в не­которых случаях песка (SiO2).

2. Вязкость шлаков

Вязкость шлака является важнейшим из свойств. Повышенная вязкость шлака затрудняет тепло- и массоперенос в шлаке, вызывает замедление всех процессов на­грева и рафинирования металла, приводит к излишнему угару раскисляющих и легирующих присадок, уменьшает выход годной стали. Вязкость шлака зависит от его температуры и состава.

clip_image004Зависимость вязкости шлаков пе­риода плавления в основной марте­новской печи от температуры приве­дена на рисунке 2, из которого видно, что в области умеренно низких тем­ператур начала плавки (вблизи тем­пературы плавления) вязкость шла­ков высока и возрастает при увели­чении их основности. Значения вязкости нормальных шлаков по ходу плавки обычно находятся в пределах 0,1-0,3.

Рисунок 2 – Зависимость вязкости шлака (Па∙с) от температуры и основности (цифры на кривых)

Компонентами шлака, резко повышающими его вязкость, прежде всего являются МgО (> 10-12%) и Сг2О3 (>5-6%); эти компоненты при содержаниях выше указанных пределов обогащают шлак мелкодисперсными частицами.

Вязкость основных шлаков существенно снижается при введе­нии 2-5% CaF2 5-7% Al2O3, 5-7% Na2O или К2О.

3. Вспенивание шлака

Вспенивание шлака вызывают мелкие пузыри СО, образующи­еся в результате окисления углерода металла и остающиеся в шлаке ввиду того, что архимедова (подъемная) сила из-за боль­шой удельной поверхности оказывается недостаточной для преодо­ления сопротивления (силы трения) шлакового расплава.

Некоторое, не чрезмерное вспенивание шлака в кислородных конвертерах с верхней подачей дутья играет положительную роль - повышается и стабилизируется усвоение кислорода ванной, создаются препятствия выпуску из конвертера капель металла и поглощению азота из подсасываемого через горловину воздуха. Чрезмерное вспенивание приводит к выбросам значительных объемов шлака из любого агрегата, что недопустимо. В мартеновских печах даже умеренное вспенивание, не приводящее к выбросам шлака, нежелательно, поскольку пени­стый шлак, обладая низкой теплопроводностью, ухудшает тепло­передачу от факела к металлу, что вызывает удлинение плавки и повышение износа футеровки, особенно свода печи, поскольку значительная часть неусвоенного металлом тепла поглощается футеровкой, а это приводит к ее перегреву.

Причиной чрезмерного вспенивания шлака могут быть повышен­ное содержание в шлаке SiO2 и Р2О5 образующие поверхностно-активные анионы SiO44- и РО43-, которые повышают устойчивость пены. Аналогичное действие оказывает наличие в шлаке очень мелких твердых частиц, которые повышают механическую прочность шлаковых пленок (служат "каркасом").

Для снижения склонности шлака к чрезмерному вспениванию из-за наличия в нем очень мелких твердых частиц необходимо повышение температуры, которое обеспечивает растворение твер­дых частиц в шлаке. Если же чрезмерное вспенивание вызывается повышенным содержанием в шлаке SiO2 и Р2О5, то необходимо повысить основность шлака присадкой в ванну извести, еще лучше присадка CaF2, и оксидов щелочных металлов.

Общие принципы установления оптимального шлакового режима плавки

Основными параметрами, определяющими шлаковый режим плавки, являются основность и количество шлака. Оптималь­ный шлаковый режим достигается одновременным изменением и химического состава (основности), и количества шлака. Если по условиям ведения плавки (высокое качество исходного сырья, умеренные требования к качеству стали и т.п.) нет необходимости в специальных мерах для удаления из металла серы или фосфо­ра, то основность шлака должна обеспечивать предотвращение чрезмерного разрушающего действия шлака на футеровку агрега­та. Для выполнения этого требования достаточно иметь основность конечного шлака 2,2-2,4. Если по ходу плавки требуется принятие специальных мер для удаления серы и фосфора, то основность шлака должна обеспечивать максимальное поглощение шлаком этих примесей. Этому требованию соответствуют конечные шлаки с основностью 2,7-3,3 в мартеновском процессе и 3,0—4,0 в кисло­родно-конвертерном процессе.

Если за счет повышения основности шлака не удается провести рафинирование металла, прибегают к увеличению его количества, путем «скачивания» отработанного шлака и «наведения» нового шлака. Поскольку наведение дополнительного шлака удлиняет плавку и ведет к дополнительным потерям металла, стараются вести процесс в одношлаковом режиме.


Основные реакции сталеплавильных процессов


Поскольку сталь получают обычно из чугуна и лома в результате окисления и удаления содержащихся в них примесей (кремния, марганца, фосфора и др.), особое значение в сталеплавильной прак­тике имеют реакции окисления. Кислород для протекания этих реакций поступает или из атмосферы, или из железной руды, или из других окислителей, или при продувке ванны газообразным кислородом.

Окисление углерода

Углерод в стали - это ее самая распространенная полезная примесь. Содержание углерода как полезной примеси в стали обычно изменяется от 0,05-0,10 до 1,0-1,2%.

Углерод в твердом железе способен образовать пересыщенный раствор, т.е. оставаться в растворе в количествах, значительно превышающих растворимость. В результате атомы углерода занимают некоторые узлы в кристаллической решетке железа (феррита), что вызывает ее искажение и приводит к возникновению в ней напряжений, способствующих повышению прочности и твердости железа.

Углерод, содержащийся в исходной металлошихте, в основном в чугуне, оказывает решающее положительное влияние на ход и результаты окислительного рафинирования металла в любом аг­регате. Это связано прежде всего с тем, что в течение всего этого периода углерод окисляется.

Во-первых, при окислении углерода выделяются газы СО и СО2. Это газовыделение обеспечивает интенсивное перемешивание ванны (металла и шлака), без которого сталеплавильные процес­сы в существующих вариантах нереализуемы. Кроме того, пузыри СО, проходя через жидкий металл, способствуют удалению из него газов и неметаллических включений.

Во-вторых, процесс окисления углерода газообразным кисло­родом протекает с выделением тепла, которое используется для нагрева ванны.

В-третьих, реакция окисления углерода [C]+(FeO)={CO}+[Fe] защищает железо от чрезмерного окисления во время его окисли­тельного рафинирования, т.е. способствует уменьшению неизбеж­ных потерь железа из-за его окисления.

В-четвертых, содержание углерода в металле и непрерывное его окисление являются основными факторами, определяющими содержание кислорода в металле, от которого зависит содержание оксидных неметаллических включений в готовой стали, т.е. ее качество.

Поведение углерода

Окисление углерода в сталеплавильных процессах в основном (на 85-90 %) протекает до {СО}. Сопутствующая ей реакция окисления углерода с образованием СО2 имеет второстепенное значение. Содержание CO2 не превышает 10-15 %.

Возможные реакции окисления углерода, растворенного в металле:

  1. [С] + 1/2О2 = СОгаз; ΔG° = -152570 - 33,8Т; - идет с выделением тепла.
  2. [С ] + (FeO) = Fe + СОгаз; ΔG° = +85 373 – 83,8Т; - протекает с поглощением тепла.
  3. [С] + [О] = СОгаз; ΔG° = —35 630—31 Т; - с выделением тепла.

Если проанализировать изменение величины ΔG° при изменении температуры, то окажется, что во всех случаях значение ΔG° с повы­шением температуры уменьшается, т. е. ее повышение благоприят­ствует протеканию реакции окисления углерода.

Константа равновесия реакции [С] + [О] = {СО} в общем случае определяется выражением Кс = Pco/(a[c]a[o]). При концентрациях углерода до 1%, а кислорода до 0,08% коэффициенты их активности примерно равны единице, поэтому Кс=Рсо/([С]·[О]).

Поскольку значение теплового эффекта реакции мало, им мож­но пренебречь. Тогда для любой температуры Рсо/([C]-[О])=const.

В конце сталеплавильного процесса при температуре 1600 0С для открытых агрегатов (Рсо= 1 кг/см2), можно считать, что Кс = 402, тогда

[C]∙[О]=Рсо/Кс=Рсо/402=0,0025Рсо=0,0025.

Это означает, что в рассматриваемых условиях равновесное остаточное содержание углерода в металле зависит только от концентрации кислорода, причем чтобы получить [С]min, необходи­мо обеспечить [О]max.

Теоретически возможное максимальное содержание кислорода (см. рисунок 3) при температурах конца сталеплавильных процессов [О]= 0,20-0,25%. Приняв среднее значение [О]= 0,23% и под­ставив его в уравнение, получим [С]min= 0,0025/0,23 = 0,01%, т. е. в открытом сталеплавильном агрегате невозможно получить содержание углерода < 0,01%.

В реальной сталеплавильной ванне в конце плавки очень труд­но получить шлак, содержащий > 50% оксидов железа, поэтому максимальное содержание кислорода в металле составляет 0,10-0,12% и минимальное остаточное содержание углерода не быва­ет меньше 0,02%. Получение такого низкого содержания углерода в металле является нежелательным, так как приводит к резкому снижению выхода годного ввиду чрезмерного окисления железа и повышенному износу футеровки агрегата.

Рисунок 3 – Взаимосвязь содержания кислорода и углерода в стали: А — равновесное для реакции обезуглеро­живания при 1600° С; Б — фактиче­ское в стали; В — равновесное по отношению к сталеплавильным шлакам

В современной практике производство стали с содержанием < 0,02% С получает большое развитие. В этих случаях в открытых агрегатах обычно достигают остаточного содержания углерода 0,025-0,040%. Дальнейшее снижение содержания углерода в ме­талле достигают обработкой жидкой стали вакуумом и нейтральным газом.

Общие принципы достижения заданного содержания углерода в готовой стали.

1 Неизбежное непре­рывное окисление этой примеси в течение всего периода окисли­тельного рафинирования.

2 Для достижения заданного содержания уг­лерода в готовом металле необходимо иметь определенный запас углерода в исходной шихте (превышение исходного содержания над конечным) и рационально расходовать этот запас в период окислительного рафинирования.

3 Плавка должна быть проведена так, чтобы имеющийся запас углерода был израсходован точно в течение того времени, которое требуется для решения других задач, кроме окисления углерода: нагрева, дефосфорации и десульфурации металла и т.п.


Основы синхронизации процессов обезуглероживания и нагрева металла


При управлении плавкой важно не просто окисление углерода и получение заданного содержания его в конечном металле, но и проведение этого процесса синхронно с процессом нагрева ванны.

В идеальных условиях, когда ванна не обменивается теплом с окружающей средой и в ней не протекают никакие другие процессы, кроме окисления углерода, относитель­ное изменение температуры ванны при окислении углерода Δt[c] можно определить по формуле

Δt[c] =Qt/(100×Cм+gшл×Cшл),

где Qt - тепловой эффект реакции окисления углерода при данных условиях, кДж/кг;

gшл - количество шлака, кг/100кг металла;

С - удельные теплоемкости металла и шлака, Дж/(кг К).

Поскольку См=0,84 кДж/(кг-К) и Сшл= 2,09 кДж/(кг-К), а количество шлака обычно составляет 10-15%, то уравнение примет вид: Δt[c] =0,009Qt.

Это означает, что синхронизация процессов обезуглероживания и нагрева металла в идеальных условиях возможна лишь из­менением теплового эффекта реакции окисления углерода.

Величина и знак теплового эффекта процесса окисления углерода могут изменяться в зависимости от источника кислорода. Основными источниками кислорода для окисления угле­рода являются: холодное дутье (кислородное или воздушное), окси­ды железа твердых окислителей (железной руды, агломерата, окаты­шей, окалины и т.п.), горячие печные газы:

Qt, кДж/кг [С] Δt[c] ,°C/%[C]

Холодное дутье:

воздушное ....…………. +4450 +40

кислородное ..... ……….+12500 +115

Нагретая атмосфера печи . . . 15000 +135

Холодный твердый окислитель –20000 -180

Окисление углерода газо­образным кислородом дутья или печных газов происходит с выделе­нием тепла, при этом чем выше температура нагрева кислорода, тем больше тепловой эффект реакции. Окисление углерода кислородом твердых окислителей является резко эндотермическим процессом

В реальных сталеплавильных процессах величина Δt[c] суще­ственно может отличаться от приведенных выше значений Δt[c] no ряду причин: происходит потеря тепла в окружающую ванну среду (нагрев футеровки, окружающего воздуха и т.п.), возможно проте­кание в ванне других экзотермических и эндотермических процес­сов, кроме окисления углерода.


Окисление и восстановление кремния


Кремний при производстве стали используется в качестве раскислителя и легирующего элемента. Сталь, легированная кремнием, об­ладает более высокими значениями предела текучести, упругости, ударного сопротивления, хорошей прокаливаемостью, жароупорностью, способностью в за­каленном состоянии сохранять твердость при относительно высо­ких температурах и др.

Кремний, содержащийся в металлической шихте, во время плавки окисляется и теряется практически полностью. На ход плавки наличие кремния в шихте как правило, влияет положительно:

1. Это выражается в улучшении теплового баланса плавки, поскольку среди обычных примесей металлической шихты кремний окисляется с выделени­ем наибольшего количества тепла.

2. Кремнезем, получающийся в результате окисле­ния кремния в ванне, активнее вносимого в готовом виде и уско­ряет процесс формирования шлака.

Однако кремнезем, образующийся при окислении кремния ме­талла, оказывает разрушающее действие на основную футеровку. Кроме того, при очень высоком содержании кремния образуется большое количество шлака, которое не всегда является желательным, поэтому обычно устанав­ливаются пределы содержания кремния в чугуне.

Кремний является обязательной примесью чугуна и в том или ином количестве содержится в ломе. Обычно содержание кремния в металлической шихте довольно высокое (0,5-1,0%).

Растворенный в ме­талле кремний может окисляться кислородом:

а) содержащимся в газовой фазе [Si ] + О2 газ = (SiO2); ΔG = -775670 + 198Т, Дж/моль;

б) содержащимся в окислах железа шлака [Si] + 2 (FeO) == (SiO2) + 2Fe; ΔG° = -300 000+98Т;

в) растворенным в металле [Si] + 2 [О] = SiO2; ΔG° == -541 840 + 203Т.

Все эти реакции сопровождаются выделением очень большого количества тепла. Знак «плюс» перед энтропийными членами в уравнениях свободной энергии свидетель­ствует о том, что при повышении температуры могут создаваться благоприятные условия для восстановления кремния.

Полнота протекания реакции окисления кремния зависит от типа процесса, точнее, характера шлака, под которым проводится плавка.

В основных процессах кремнезем образует в шлаке прочные соединения: в начале плавки силикаты железа 2FeO∙SiO2 и каль­ция CaO∙SiO2, в дальнейшем двухкальцевый силикат кальция 2CaO∙SiO2 по реакции (SiO2) + 2(СаО) = 2СаО∙SiO2. Благодаря протеканию этой реакции активность SiO2 в шлаке становится очень низкой даже при высокой его концентрации и кремний в основных процессах окисляется практически полнос­тью еще в начале плавки, а по ходу плавки не восстанавливается, независимо от присутствия угле­рода и других обычных примесей чугуна и изменения температу­ры ванны.

В кислых процессах активность SiO2 в шлаке во много раз выше, чем в основных процессах, поэтому с повышением температуры ванны к концу плавки происходит восстановление кремния из шлака по реакции

[Si] + 2 (FeO) == (SiO2) + 2Fe,

в результате чегоостаточное содержание крем­ния в металле может достигать 0,3-0,4 %. Восстановителем кремния в кислых процессах может также являться углерод.

Обеспечение заданного содержания кремния в готовой стали

Как было показано выше, в основных процессах, имеющих в настоящее время решающее значение в производстве стали, ос­таточное содержание кремния в металле в конце окислительного рафинирования ничтожно мало (следы), поэтому кремний как по­лезная примесь в необходимом количестве вводится в металл после окончания окислительного рафинирования. Для этой цели обычно используют различные железокремнистые сплавы, называемые ферросилицием


Окисление и восстановление марганца


Марганец в сталеплавильных процессах может образовывать различные химические соединения: наиболее важными из которых являются MnO, MnS и Мn3С. Мар­ганец в готовой стали в большинстве случаев является полезной примесью, служащей для раскисления и легирования.

Марганец как раскислитель в количестве 0,25-0,50% содер­жится в кипящей, полуспокойной и спокойной углеродистой стали.

Основное положительное влияние марганца на свойства стали состоит в уменьшении вредного влияния серы за счет связывания ее в сульфид MnS, который при кристаллизации металла выделяется в виде твердых, случайно расположенных включений, приносящих во много раз меньше вреда, чем FeS. Для выделения серы в виде менее вред­ных твердых включений необходимо иметь в стали следующее отношение содержания марганца и серы: [Mn]/[S]≥20-22.

Марганец как легирующий элемент.

Марганец резко уменьшает критическую скорость закалки, поэтому марганцовистая сталь прокаливается значительно глубже, чем простая углеродистая. Растворяясь в феррите, марганец по­вышает прочность стали, но несколько снижает пла­стичность стали (относительное удлинение и ударную вязкость). Марганец также повышает износостойкость и упругость стали.

Поведение марганца в сталеплавильных ваннах

Марганец вносится в сталеплавильную ванну в основном с чугуном и ломом. В зависимости от содержания марганца в чугуне и ломе и их соотношения содержание марганца в исходной шихте изменяется в широких пределах: от 0,3-0,5 до 1,0-1,5% и более.

Марганец, растворенный в металле, окисляется кислородом;

а) содержащимся в газовой фазе:[Mn] + О2 газ = (МпО); ΔG° = -361 380 + 106Т;

б) содержащимся в окислах железа шлака: [Мп] + (FeO) = (МпО) + Fe; ΔG° = —124 000 + 56,4Т;

в) растворенным в металле: [Мп] + [О] = (МпО); ΔG° = -245 000 + 109Т;

Возрастание величины ΔG° по мере повышения температуры свиде­тельствует о возможности протекания при высоких температурах - обратного процесса — восстановления марганца из оксида желе­зом: (МnО) + Fe = [Мn] + (FeO), а также углеродом и кремнием: (МnО) + [C] = [Мn] + СОгаз; 2 (МnО) + [Si] = 2 [Mn] + SiO2.

Полнота протекания реакции окисления марганца зависит от характера шлака, под которым проводится плавка, окисленности шлака, и температурного уровня процессса.

В начале плавки марганец интенсивно окисляется до достижения равновесия реакции

(МnО) + Fe = [Мn] + (FeO)

После достижения равновесия содержание марганца в металле по ходу процесса может оставаться неизменным при постоянстве внешних условий или изменяться в сторону увеличения или умень­шения в зависимости от характера изменения внешних условий - температуры, окисленности ванны, количества шлака и т.п.

В конце плавки возможны следующая динамика содержания марганца в металле:

1. при [С]>0,2-0,3% за счет повышения температуры при низкой окисленности шлака концентрация марганца в металле в конце плавки повышается.

2. при [С]< 0,05-0,07%), вследствие резкого повышения содержания FeO в шлаке концентра­ция марганца в металле снижается (несмотря на дополнительное повышение температуры).

На остаточное содержание марганца в металле влияет основность шлака: более глубокое окисление марганца в кис­лых процессах, чем в основных, объясняется тем, что МnО, обладая основными свойствами, в кислых шлаках в значительной степени вза­имодействует с SiО2 например, по реакции 2(MnO) + (SiO2) = (MnO)2-SiO2. Это приводит к снижению активности МnО в шлаке и смещению реакции вправо.

К концу плавки ввиду повышения тем­пературы (1580-1620°С и более) и снижения содержания FeO в шлаке (8-12% при концентрации углерода в металле не менее 0,15-0,20%) значения Lmn снижаются до 10-20 и в металле остается 20-35 % марганца. Однако при выплавке стали с 0,05-0,07% С содержание FeO в шлаке в конце плавки снова повышается до 15-20% и более, что приводит к увеличению Lmn до 25-35 и выше и снижению остаточного содержания марганца до 15-20 %.

Обеспечение заданного содержания марганца в готовой стали

В большинстве случаев остаточное содержание марганца бывает значительно меньше заданного. Заданное содержание марганца в готовой стали обеспечивается введением его в металл в виде того или иного металлического марганецсодержащего ма­териала (ферромарганца, силикомарганца, металлического марган­ца и др.) в ковш при выпуске.


Окисление и восстановление фосфора


В рудах фосфор всегда сопутствует железу, часто в больших количествах. В процессе восстановительной плавки рудного мате­риала весь фосфор шихты пере­ходит в чугун. Минимальное содержание фосфора в чугуне состав­ляет 0,1-0,2%, максимальное 2-2,5%.

Повышенное содержание фосфора снижает пластичность металла (особенно ударную вязкость), также ухудшает прочность (предел прочности), пластичность и свариваемость нагретого металла.

В подавляющем большинстве случаев фосфор является вред­ной примесью стали, его содержание в металле особо ответ­ственного назначения должно составлять не более 0,005-0,010%.

В шихту сталеплавильных печей фосфор попадает в основном из чугуна. Некоторое количество фосфора может попасть в шихту из лома, а также из ферросплавов.

Растворенный в металле фосфор может окисляться кислородом:

а) содержащимся в газовой фазе: 4/5[P ] + О2 раз = 2/5 (P2O5); ΔG0 = -619 280 + 175Т;

б) содержащимся в окислах железа шлака: 4/5 [Р] + 2 [FeO] = 2/5(P2O5)+ 2Fe; ΔG0= -143 050 + 66Т;

в) растворенным в металле: 4/5 [Р] + 2 [O] == 2/5 (P2O5) ΔG° = -385 220 + 170Т.

Знак «плюс» перед энтропийными членами в уравнениях свобод­ной энергии свидетельствует о том, что при повышении температуры могут создаться благоприятные условия для восстановления фос­фора.

Одной из основных реакций дефосфорации металла в сталеплавильных процессах является образование пентаоксида фосфора главным образом по реакции: 2[Р] + 5(FeO) = (P2O5) + 5[Fe]. Однако P2O5 термически неустойчив и при температурах сталеплавильных ванн в свободном состоянии существовать не может. Для успешной дефосфорации металла дополнительно необходимо образование прочных фосфатов в шлаке.

В кислых шлаках вследствие избытка SiO2 образование фосфатов получает ограниченное развитие и в результате оказывается, что при работе под та­кими шлаками фосфор, перешедший в шлак при относительно низких температурах, при повышении температуры восста­навливается и при обычных температурах сталеварения (>1500°С) практически весь переходит обратно в металл. Коэффициент распределения фосфора между кислым шлаком и металлом Lp = (Р)/[Р] составляет всего 1-3, поэтому на практике считают, что в этих процессах удаления фосфора из металла не происходит.

В основных шлаках при низких температурах начала плавки могут образоваться трифосфаты железа в основном по реакции

(P2O5) + 3(FeO) = (3FeO. P2O5)

Однако при высоких температу­рах фосфаты железа непрочны и фосфор может перейти обратно в металл. Для того, чтобы удалить фосфор из металла и удержать его в шлаке, необходимо снижать активность P2O5 в шлаке. Этого достигают при наведении основного шлака с помощью добавок извести (или известняка). При этом основная составляющая извести—СаО реагирует с P2O5, образуя фосфаты кальция (СаО)n-(P2O5), который по сравнению с другими фосфатами кальция имеет наибольшую устойчивость и темпе­ратуру плавления. Поэтому на конечных стадиях плавки дополнительным условием обеспечения процесса дефосфорации металла является протекание реакции (P2O5) + 3(СаО) = (3СаО∙P2O5).

Комбинируя последнее уравнение с уравнением реакции образо­вания P2O5, получим уравнение суммарной реакции дефосфорации металла в конце основного процесса:

2[Р] + 5(FeO) +3(СаО) = (3СаО. P2O5) + 5[Fe] + Q.

Таким образом, можно сформулировать основные условия, со­блюдение которых позволяет удалять фосфор из металла:

1). наведение шлака высокой основности: для мартеновского процесса в пределах 2,5-2,8, а для кислородно-конвертерного процесса с верхней пода­чей дутья 3,0-3,5.

2). высокая окисленность шлака. Это связано с тем, что, во-первых, FeO принимает прямое участие в процессе дефосфо­рации (2[Р] + 5(FeO) = (P2O5) + 5[Fe]); во-вторых, FeO ускоряет растворе­ние извести в шлаке, т. е. облегчает получение гомогенного шлака.

3) наличия шлаков, содержащих мало фосфора, для чего при переделе фосфористых чугунов проводят смены (скачивания) шлака;

4) невысокая температура. Прямое влияние температуры связано со знаком теплового эффекта реак­ции.



Удаление серы (десульфурация металла)


Сера является самой вредной примесью, снижающей механи­ческую прочность и свариваемость стали, а также ухудшающей ее электротехнические, антикоррозионные и другие свойства.

Во время кристаллизации и при дальнейшем охлаждении металла весь избыток серы выше указанных пределов выделяется в виде сульфида железа FeS совместно с FeO. Чистый сульфид железа имеет температуру плавления 1190°С, а оксисуль-фидный расплав имеет эвтектику с температурой затвердевания ~985°С, т. е. значительно ниже температуры плавления металла (обычно ~1500°С). Это при кристаллизации металла приводит к выделению сульфида и оксисульфида железа в жидком виде. Выделяющиеся неметаллические включения располагаются по границам зерен в виде тонких пленок. Образование таких пленок резко снижает прочность металла при температурах (>1000°С), поскольку они при этих температурах, находясь в жидком или размягченном состоянии, ослабляют меж-зеренную связь в металле. Это явление называют красноломкос­тью стали. Красноломкость вызывает: 1) образование так называ­емых горячих трещин на слитках, литых заготовках и изделиях (деталях); 2) появление рванин, трещин и других поверхностных дефектов на прокате; 3) плохое сваривание внутренних усадочных пустот металла во время прокатки, вследствие чего головная обрезь от слитков возрастает при повышении содержания серы.

Не меньшее отрицательное влияние сера оказывает на служеб­ные, прежде всего на прочностные свойства стали, особенно при низких температурах < (-30°С). Следовательно, повышенное содер­жание серы вызывает и красноломкость, и хладноломкость ста­ли.

Сера является химически активным элементом и образует различные соединения, устойчивые при высоких температурах сталеплавильных процессов и способные переходить и в газовую, и в шлаковую фазы.

Обмен серы между газовой фазой и жидкой ванной

В процессе плавки сера можкт окисляться кислородом по реакциям:

1) [S]+2[О]={SO2} на границе газ-металл в пузырях СО, за счет кислорода металла

2) (S) + 2(FeO) = 2[Fe] +{SO2} на границе газ-шлак в пузырях СО, находящихся в объеме шлака;

3) на границе газ-металл, с участием кислорода газовой фазы [S]+{O2} ={SO2};

4) на границе газ-шлак, над ванной (S) + {O2}={SO2}

Таким образом, пузыри СО, проходящие через толщу металла, уносят некоторое количество серы. Это количество серы тем больше, чем выше содержание серы и кислорода в металле.

Результатом протекания реакции окисле­ния серы газообразным кислородом на границе шлак-газ является наблюдаемое на практике удаление серы из ванны в газовую фазу в количестве 5-10% от исходного содержания серы в шихте.

Основная часть серы удаляется из металла окислительным шлаком

Традиционной является схема:

- сера, находящаяся в металле в виде сульфида железа, в соответ­ствии с законом распределения переходит в шлак, [FeS] = (FeS).

- в шлаке происходит образование более прочного и плохо ра­створимого в металле сульфида кальция по реакции (FeS) + (СаО) = (CaS) + (FeO).

- суммарная (об­щей) реакция десульфурации [FeS] + (СаО) = (CaS) + (FeO).

Из структуры последнего уравнения вытекает, что для улучше­ния десульфурации металла прежде всего необходимо в шлаке повышение содержания свободного СаО, которое возможно повы­шением основности шлака, и снижение содержания FeO, которое определяется в основном концентрацией углерода в металле.

Влияние температуры на коэффициент распределения серы может быть прямым и косвенным. Прямое влияние связано с тепловым эффектом процесса перехода серы из металла в шлак. Этот процесс является экзотермическим, поэтому при постоянстве других условий, чем выше температура, тем меньше Ls, но это влияние незначительно, так как тепловой эффект процесса неболь­шой: -42 кДж/моль.

Косвенное влияние температуры на Ls заключается в том, что при высокой температуре можно обеспечить повышенную основность шлака, которая способ­ствует увеличению Ls. Чем выше температура ванны, тем лучше десульфурация металла, если повышение температуры рационально используется для получения высокоосновного гомо­генного шлака. Кроме того с повышением температуры ускоряются диффузионные процессы.

Сера является поверхностно активным элементом. Высокая поверхностная активность серы приводит к тому, что на поверхности раздела фаз концентра­ция серы выше, чем в объеме раствора. Поэтому наибольший эффект дает при­менение таких методов ведения плавки, которые обеспечивают увеличение по­верхности контакта металла с десульфурирующей фазой (искусственное пере­мешивание металла со шлаком, вдувание в металл тонкоизмельченных порошко­образных реагентов и т. п.).

Однако основные возможности улучшения десульфу­рации металла заложены в изменении химического состава шлака.

Кислые шлаки об­ладают минимальной серопоглотительной способностью и обеспе­чивают L = 0,5-1,5. Это незначительное поглощение серы кислым шлаком происходит не в результате образования простых анионов S2-, а вследствие того, что сера частично замещает кислород в кремнекислородных анионах:

clip_image006

Основные окислительные шлаки обычного химического соста­ва (B > 2,0-2,5) обеспечивают Ls = 3-7, иногда до 10, т. е. в несколько раз выше, чем для кислых шлаков. Коэффициент распределения серы между основным окислительным шлаком и металлом в период окислительного рафинирования зависит в ос­новном от содержания в шлаке СаО и SiO2 или упрощен­но - от основности шлака. Для наведения высокоосновного шлака жидкоподвижного шлака в ванну осуществляют присадки извести (известняка) и осуществляют скачивание первичного шлака для удаления из печи кремнезема.

Влияние FeO двойственно. С одной стороны, наличие FeO в шлаке ускоряется растворение СаО и получение гомогенного высокоосновного шлака (разжижает шлак), что улуч­шает десульфурацию. С другой стороны наличие в шлаке FeO смещает равновесие реакции десульфурации в обратную сторону.

В целом серопоглотительная способность основных шлаков остается низкой из-за высокой окисленности сталеплавильных шлаков. В лучшем случае коэффициент распределения серы Ls= (S)/[S] в лучшем случае достигает 10, а обычно изменяется в пределах 3-7. При этом в одношлаковом режиме степень десульфурации R=[S]н/[S]к может составить 1,5-2, т. е. обеспечивает снижение содержания серы в металле в 1,5-2 раза (на 40-50 %), что в современных условиях часто бывает недостаточным.

В настоящее время в связи с повышением требований к каче­ству стали и разливкой ее на МНЛЗ обязательным элементом сталеплавильной технологии становится ковшевая десульфурация металла.

Таким образом, удалению серы из металла (десульфурации ме­талла) способствуют:

1) наличие основных шлаков с высокой активностью CaO;

2) низкая окисленность металла шлака (минимум FeO);

3) низкая концентрация серы в шлаке (скачивание и наведение нового шлака);

4) перемешивание металла со шлаком и увеличение поверх­ности контакта;

5) повышение температуры ванны.



Конвертерное производство стали

История конвертерного производства стали

Конвертерный способ получения стали был предложен в 1855г. английским механиком Генри Бессемером. Метод заключался в переделе чугуна в сталь путем продувки жидкого чугуна воздухом, подаваемым через днище конвертера. Разработанный Бессемером агрегат для продувки чугуна, (от англ. con­verter — преобразователь), представлял собой вращающийся вокруг горизонталь­ной оси сосуд, состоящий из металлического кожуха, футерованного изнутри кислым (динасовым) огнеупорным кирпичом. В футерованное днище вставляются шамотные фурмы с отверстиями для подачи воздуха, кото­рые называются соплами.

Наличие кислой футеровки предопределяло работу бессемеровского конвертера с кислыми шлаками, поэтому Бессемеровский процесс применялся только для пере­дела низкофосфористых руд.

В 1878 г. англичанином Сиднеем Томасом была решена задача удаления фос­фора из чугуна продувкой в конвертере с основной футеровкой, в качестве кото­рой был использован обожженный доломит, и при наличии высокоосновного шла­к. Для получения высокоосновного шлака в конвертер загружали известь. Спо­соб переработки высокофосфористых чугунов путем продувки воздухом в кон­вертерах с основной футеровкой получил название томасовского, а конвертер с основной футеровкой — томасовского конвертера.

Достоинства и недостатки бессемеровского и томасовского процессов

Достоинства бессемеровского и томасовского процессов — высокая произво­дительность, простота устройства конвертера, отсутствие необходимости применять топливо, малый расход огнеупоров и связанные с этим более низкие, чем при марте­новском и электросталеплавильном процессах капитальные затраты и расходы по переделу.

Однако обоим процессам присущ большой недостаток — повышенное содержа­ние азота в стали (0,010—0,025 %), вызываемое тем, что азот воздушного дутья растворяется в металле. По этой причине бессемеровская и томасовская сталь обла­дают повышенной хрупкостью и склонностью к старению. Для получения стали с пониженным содержанием азота в 1950—65 применялись способы продувки снизу парокислородной смесью и смесью кислорода и углекислого газа, а также метод продувки дутьем, обогащен­ным кислородом.

В 50-х годах XX века в ряде стран Европы были разработаны и внедрены многочисленные варианты конвертерного процесса с при­менением кислорода. Эти процессы получили общее название кисло­родных конвертерных процессов.

В период с 1955 по 1975 гг. бессемеровский и томасовский про­цессы и их разновидности были вытеснены кислородно-конвертер­ными процессами с верхней и нижней подачей дутья.


Устройство кислородного конвертера с верхней продувкой


Кислородно-конвертерный процесс — это выплавка стали из жидкого чугуна с добавкой лома в конвертере с основной футе­ровкой и продувкой кислородом сверху через водоохлаждаемую фурму.

Кислородно-конвертерный процесс, обладает рядом преимуществ по сравнению с мартеновским и электростале­плавильным процессами:

1) более высокая производительность одного работающего ста­леплавильного агрегата (часовая производительность мартеновских и электродуговых печей не превышает 100 т/ч, а у большегрузных конвертеров достигает 400—500 т/ч);

2) более низкие капитальные затраты, т. е. затраты на сооруже­ние цеха, что объясняется простотой устройства конвертера и воз­можностью установки в цехе меньшего числа плавильных агрегатов;

3) меньше расходы по переделу, в число которых входит стои­мость электроэнергии, топлива, огнеупоров, сменного оборудова­ния, зарплаты и др;

4) процесс более удобен для автоматизации управления ходом плавки

Благодаря использованию для продувки чистого кислорода, кислородно-конвертерная сталь содержит азота не более, чем марте­новская и по качеству не уступает мартеновской. Тепла, которое выделяется при окислении составляющих чугуна с избытком хва­тает для нагрева стали до температуры выпуска и позволяет использовать до 24-28% лома в шихте.

Устройство кислородного конвертера

Кислородный конвертер представляет собой поворачивающийся на цапфах сосуд грушевидной формы, футерованный изнутри и снабженный леткой для выпуска стали и отверстием сверху для ввода в полость конвертера кислородной фурмы, отвода газов, заливки чугуна, загрузки лома и шлакообразующих и слива шлака (см. рисунок 4). Емкость существующих конвертеров составляет 10—450 т.

clip_image008

1 — опорный подшипник; 2 — цапфа; 3 — защитный кожух; 4 — опорное кольцо;

5 —корпус ведомого колеса; 6 — навесной электродвигатель с редуктором;

7 — ведомое зубчатое колесо; 8 — демпфер навесного электродвигателя;

9 — демпфер корпуса ведо­мого колеса; 10 — опорная станина

Рисунок 4 – Устройство кислородного конвертера

Форма конвертера. В конфигурации кожуха и внутреннего рабочего объема конвертера можно выделить три части: суживающуюся верхнюю часть (горловину), цилиндрическую часть и днище, которое может быть либо сферическим, либо иметь суживающуюся часть, к которой примыкает днище.

Размеры, конвертера. Они влияют на многие показатели процесса и должны, прежде всего, обеспечивать продувку без выбросов ме­талла через горловину, поскольку выбросы уменьшают выход годной стали и требуют периодических остановок конвертера для уда­ления настылей металла с горловины и входной части котла-утили­затора. Размеры некоторых конвертеров приведены в таблице.

Размеры некоторых кислородных конвертеров

Емкость, т

Высота рабочего простран­ства, Н, м

Диаметр рабочего простран­ства, м

Отно­шение H/D

Удельный объем, м3

Глубина ванны, м

Диаметр горловины, м

100

7,65

4,00

1,90

0,96

1,50

1,65

200

9,50

5,95

1,60

1,03

1,78

3,10

300

9,27

6,55

1,41

0,87

1,90

3,43

Основные параметры, определяющие возможность работы кон­вертера без выбросов — это удельный объем (объем рабочей полости, приходящийся на 1 т жидкой стали, м3/т) и отношение высоты рабочего объема к его диаметру, H/D.

Удельный объем должен нахо­диться в оптимальных пределах. Если он недостаточен, то при продувке возникают выбросы вспенивающихся металла и шлака. Вместе с тем, если удельный объем чрезмерно велик, то неоправданно возрас­тают габариты конвертера и высота конвертерного цеха, теплоотдающая поверхность кожуха и теплопотери, расход огнеупоров на кладку футеровки.

В последние годы для проектируемых конвертеров емкостью 100—400 т с учетом сложившегося режима продувки (150— 250 м3/мин кислорода на одно сопло фурмы) величину удельного объема принимают в пределах от 0,8—0,85 до 1,0 м3/т, причем эта величина должна понижаться при росте емкости конвертера.

Выбирая величину H/D учитывают, что при ее снижении стенки конвертера отдаляются от высокотемпературной подфурменной зоны, что способствует повышению их стойкости; возрастает также пло­щадь контакта металл-шлак, что облегчает удаление в шлак фосфора и серы. Вместе с тем при чрезмерном снижении H/D, т. е. уменьше­ние высоты конвертера, начинаются выбросы, поскольку вспенива­ющийся металл достигает низко расположен ной горловины. При росте H/D вероятность появления выбросов снижается, но и увели­чение H/D сверх оптимальной величины не рекомендуется, поскольку это требует увеличения высоты здания цеха.

Для проектируемых в последние годы конвертеров емкостью 100—400 т величину H/D принимают в пределах 1,8—1,35, причем в этих пределах она обычно снижается пропорционально увеличе­нию емкости конвертера. Это связано с тем, что для предотвращения выбросов, расстояние от уровня ванны в спокойном состоянии до верха горловины для конвертеров емкостью 100—400 т должно составлять примерно 6—8 м.

Глубина ванны жидкого металла в спокойном состоянии изме­няется от 1,0 до 1,8—1,9 м, возрастая при увеличении емкости кон­вертера. Даже для конвертеров малой емкости (50 т) она не должна быть менее 1 м во избежание разрушения футеровки днища кисло­родными струями. Увеличение глубины ванны сверх 1,9 м также не рекомендуется, так как при этом из-за недостаточного проникнове­ния вглубь ванны кислородных струй и ухудшения перемешивания ванны затрудняется плавление стального лома.

Диаметр горловины существующих конвертеров емкостью от 50 до 400 т находится в пределах (0,4—0,6)D и изменяется от 1,0 до 4,1 м, обычно увеличиваясь при увеличении емкости конвертера. При выборе величины учитывают, что горловина больших раз­меров позволяет производить завалку стального лома в один прием, что сокращает длительность плавки. Вместе с тем, при увеличении Dг возрастают теплопотери и несколько повышается содержание азота в выплавляемой стали, поскольку через большую горловину в по­лость конвертера подсасывается больше воздуха, азот которого растворяется в металле. Поэтому горловина не должна быть больше, чем это необходимо для загрузки шихты.

Угол наклона стенок горловины к вертикали в существующих конвертерах составляет 20—35°. На основании отечественной практики признано нецелесообразным делать угол более 25°, так как при большем уклоне ухудшается стойкость футеровки горло­вины.

Кожух и днище. Кожух конвертера выполняют сварным из листовой стали толщиной от 20 до 110 мм и делают его либо цельно­сварным, либо с отъемным днищем, которое крепится болтами или клиновыми соединениями. Горловина в большей степени, чем другие элементы кожуха подвержена воздействию высоких температур и короблению и мо­жет быть повреждена при удалении за­стывших выплесков металла и в процессе слива шлака. Поэтому верх горловины защищают сварным или литым шлемом, который в случае повреждения легко заменить.

Днище конвертеров обычно делают сферическим. Эта форма облегчает циркуляцию металла при верхней подаче дутья и спо­собствует снижению износа футеровки. Широко применяются как неотъемные, так и отъемные днища. Отъемные днища могут быть приставными и вставными.

Цапфы и опорное кольцо. Конвертер цапфами опирается на роли­ковые опорные подшипники, закрепленные в опорных станинах. Подшипники обеспечивают возможность вращения конвертера во­круг оси цапф; при этом один подшипник фиксированный, а другой «плавающий», что дает возможность перемещения вдоль оси цапф на 15—30 мм.

Механизм поворота. Он обеспечивает вращение конвертера во­круг оси цапф на 360° со скоростью до 1 об/мин. Поворот кон­вертера необходим для выполне­ния технологических операций: заливки чугуна, завалки лома, слива стали и шлака и др.

Механизм поворота может быть односторонним (для малык конвертеров – до 100т) и двусторонним (для большегрузных конвертеров), позволяющим более равномерно распределить нагрузки при наклоне конвертера.

Механизмы поворота бывают стационарными и навесными. В последние годы применяют более совершенные навесные (за­крепленные на цапфе) многодвигательные механизмы поворота.

Навесной многодвигательный привод обладает следующими пре­имуществами: перекос цапф не влияет на его работоспособность; при выходе из строя одного двигателя привод остается работоспо­собным; в 2—3 раза уменьшается масса привода; существенно умень­шается площадь, необходимая для его установки.

Футеровка. Футеровка конвертера работает в тяжелых условиях, подвергаясь воздействию высоких температур; термических напря­жений, возникающих при колебаниях температуры футеровки; ударов кусков шихты при загрузке и знакопеременных нагрузок, возникающих при вращении конвертера. Она изнашивается также в результате химического взаимодействия со шлаком и размыва­ющего действия потоков металла и шлака.

Футеровку обычно делают двухслойной. Примыкающий к ко­жуху арматурный слой толщиной 110—250 мм умень­шает теплопотери и защищает кожух в случае прогара рабочего слоя. Арматурный слой выполняют из магнезитового или магнезито-хромитового кирпича. Внутренний или рабочий слой изнашивается во время ра­боты и его заменяют при ремонтах футеровки; его толщина в зави­симости от емкости конвертера составляет 500—750 мм.

Для кладки рабочего слоя используют огнеупоры на основе доломита (CaO-MgO) и магнезита на связке из каменноугольной смолы.

Стойкость футеровки в зависимости от качества огнеупоров и условий работы конвертера составляет 400—900 плавок (2—5 кг на 1 т стали).

С целью повышения стойкости футеровки конвертеров применяется горячее торкретирование футеровки. Суть торкретирования сводится к нанесению с помощью торкрет-машин огнеупорной массы на изношенные участки футе­ровки.

Длительность торкретирования обычно не пре­вышает 5 мин, его проводят после каждой или после нескольких плавок. Рекордная стойкость футеровки при торкретировании достигнута на одном из японских заводов — 10 110 плавок при расходе огне­упорного кирпича и торкрет-массы 0,19 и 1,38 кг/т стали соот­ветственно.

Кислородная фурма. Кислород подают в конвертер через вер­тикально расположенную водоохлаждаемую фурму, которую вводят в полость конвертера через горловину строго по его оси. Давление кислорода перед фурмой составляет 1,0—1,6 МПа. Высоту фурмы над ванной можно изменять по ходу плавки; обычно она увеличи­вается при росте емкости конвертера и находится в пределах 0,8— 3,3 м от уровня ванны в спокойном состоянии.

Фурма выполнена из трех концентрично расположенных сталь­ных труб и снабжена снизу медной головкой с соплами. Полости, образованные трубами, служат для подачи кислорода, подвода и отвода охлаждающей воды.

Медная головка фурмы имеет от 3 до 7 сопел типа сопла Лаваля, возрастая при увеличении расхода кислорода и емкости конвертера. Многосопловые фурмы благодаря рассредоточению кислородного потока на несколько струй обеспечивают «мягкую» продувку и минимальное количество выбросов. Кроме того, они дают возможность увеличить интенсивность подачи кислорода и сократить, благодаря этому, длительность плавки. Стойкость головок фурм составляет 50—250 плавок.



Шихтовые материалы и требования к ним


Основным шихтовым материалом кислородно-конвертерного про­цесса является жидкий чугун. Состав чугунов, перерабатываемых на разных заводах изменяется в широких пределах: 3,7—4,6 % С; 0,4—2,6 % Mn; 0,3—2,0 % Si; 0,02—0,08 % S; <0,3 % P.

Оптимальное содержание кремния в чугуне [Si]опт = 0,6—0,9 %. При излишне высоком содержании кремния возрастает расход извести для ошлакования образующейся SiO2 и увеличивается ко­личество шлака в конвертере, что ведет к росту потерь железа со шлаком и способствует появлению выбросов; понижается также стойкость футеровки конвертера. Вместе с тем при очень низком (<0,3 %) содержании кремния замедляется шлакообразование в связи с мед­ленным растворением извести из-за слишком низкого содержания SiO2, в первичных шлаках, а также снижается приход тепла.

Содержание марганца в чугунах, используемых на большинстве отечественных заводов, находится в пределах 0,2—1,1 %. Наличие в первичных шлаках закиси марганца ускоряет растворение извести, ускоряет шлакообразование, что улучшает дефорсфорацию и десульфурацию, а также уменьшает количество выбросов и повышает стойкость футеровки. Кроме того, наличие MnO снижает поверхностное натяжение шлака, который изолирует металл от воздействия атмосферы (азот). Поэтому для конвертерного передела желательно иметь содержание марганца в чугуне не менее 0,8%.

Содержание фосфора в чугуне не должно превышать 0,2—0,3 %, поскольку при большем его содержании необходимо осуществлять промежуточный слив шлака во время продувки и наведение нового, что снижает производительность конвертера.

Поскольку десульфурация металла при плавке в кислородном конвертере протекает недостаточно полно, чугун должен содержать менее 0,03—0,04 % серы.

Температура жидкого чугуна, перерабатываемого в кислородных конвертерах обычно составляет 1300—1450 °С. Применять чугун с более низкой температурой нежелательно, так как это ведет к хо­лодному началу продувки и замедлению шлакообразования.

Количество стального лома доходит до 25—27 % от массы шихты. К лому, как и при прочих сталеплавильных процессах, предъяв­ляется требование о недопустимости высокого содержания фосфора, серы, примесей цветных металлов и ржавчины. Кроме того, ограни­чивают максимальный размер кусков лома, поскольку слишком большие куски могут не успевать раствориться в металле за время продувки, а во время загрузки могут повредить футеровку конвер­тера. Для конвертеров емкостью 100—350 т размер кусков лома не должен быть более 0,3х0,3х1,0 м, а пакетов лома не более 0,7х1х2 м.

Основные шлакообразующие материалы — это известь и плавиковый шпат, иногда в качестве шлакообразующих или охладителей используют также железную руду, прокатную окалину, боксит, агломерат, рудно-известковые окатыши.

Известь должна быть свежеобожженной и содержать >90 % СаО, <3 % SiO2 и <0,05—0,1 % S. Куски извести должны иметь размеры от 10 до 50 мм. При­менение более мелких кусков извести не допускается, так как они будут вынесены из конвертера отходящими газами.

Плавиковый шпат — эффективный разжижитель шлака. Он со­держит 75—92 % CaF2, основной примесью является SiO2. Желез­ная руда, агломерат и окатыши должны содержать не более 8 % SiO2, размер кусков руды должен быть 20—50 мм.

Боксит содержит 37—50 % А2О3, 10—20 % SiO2 и 12—25 % Fe2O3; обычно в нем также много влаги (10—20 %), что требует предварительной просушки во избежание внесения в сталь водорода.



Технология кислородно-конвертерной плавки

Наиболее простым и самым распространенным вариантом кон­вертерных процессов является проведение плавки в одношлако­вом (моношлаковом) режиме. В этом случае технологический цикл обычно состоит из нескольких операций, продолжительность которых приведена ниже, мин:


Завалка лома

3-4

Заливка чугуна

3-4

Продувка

10-25

Взятие пробы, ожидание анализа

3-4

Слив (выпуск) металла

5-10

Слив шлака

1-2

Осмотр и подготовка конвертера к

очередной плавке, в т. ч. торкретирование

0-5

Общая длительность цикла (плавки)

25-50

Продолжительность отдельных операций и цикла (плавки), как правило, не зависит от вместимости конвертера. Это объясняется тем, что по мере повышения вместимости конвертера повышается интенсивность дутья (3-7 м3/т-мин) и совершенствуется оборудование, позволяющее уменьшить продолжи­тельность таких операций, как завалка лома, заливка чугуна и т.д.

Перед началом каждой плавки осу­ществляют ее шихтовку (планирование), то есть определяют оптимальные для данных условий количества (расходы) чугуна, лома, шлакообразующих материалов и кислорода, обеспечивающие по окончании продувки получение металла с заданной массой, темпе­ратурой и концентрацией углерода, фосфора и серы.

Ход плавки. Плавку начинают с загрузки в конвертер лома. Завалка лома осуществляется в наклонном положе­нии конвертера при помощи совков, объем которых принимают такими, чтобы весь лом был подан в одном совке, т. е. загрузку осуществить в один прием. Равномерное распределение лома на днище достигается наклоном конвертера в противоположную от загрузки сторону. Затем из заливочного ковша через горловину наклоненного конвертера заливают жидкий чугун. Заливка чугуна в требуемом количестве, известного химического состава и температуры осуществляется в один прием при помощи чугуновозных ковшей соответствующей вместимости.

После заливки чугуна конвертер поворачивают в вертикальное рабочее положение. В полость конвертера вводят фурму, включая подачу кислорода – период продувки. Затем загружают первую порцию шлакообразующих (известь с плавиковым шпатом и иногда с добавкой руды, окалины, окатышей, боксита). В первую порцию входит. 1/2—2/3 шлакообразующих, оставшееся количество вводят несколькими порциями в течение первой трети длительности про­дувки. Эти материалы вводят порциями 1% массы металла, чтобы не вызвать переохлаждения ванны и нарушения нормально­го хода плавки. Часть извести (20-40%) иногда вводят до заливки чугуна.

За счет вводимого кислорода окисляются избыточный углерод, а также кремний, марганец и небольшое количество железа, причем окисление кремния и марганца заканчивается в первые 3—4 мин продувки.

Из образующихся окислов (исключая СО) и загружаемой в кон­вертер извести и других сыпучих формируется шлак. Основность его по мере растворения извести увеличивается и к концу продувки составляет 2,5—3,7. В течение всей продувки в шлак из металла удаляются фосфор и сера.

Образующиеся при окислении углерода пузырьки СО вспени­вают металл и шлак и существенно усиливают циркуляцию шлака и металла, что ускоряет процессы окисления, дефосфорации, десульфурации, нагрева металла и др. Вместе с пузырьками окиси угле­рода из металла удаляются растворенные в нем вредные газы — водород и азот.

Выделяющееся при реакциях окисления тепло обеспечивает нагрев металла до требуемой перед выпуском температуры и расплавление стального лома. Плавление лома обычно заканчивается в течение первых 2/3 длительности продувки.

Газообразные продукты окисления углерода (СО и немного СО2) покидают конвертер через горловину, образуя высокотемпературный поток отходящих газов, в котором содержится много (до 250 г/м3) мелкодисперсных частиц Fе2О3. Наличие в отходящих газах большого количества оксидов железа связано с интенсивным испарением железа и его оксидов (дымовыделение). С отходящими газами выносятся также мелкие капели металла и шлака, мелкие частицы сыпучих мате­риалов, а также возможны выбросы (выливания через горлови­ну) металла и шлака.

Для очистки конвертерного газа от пыли 50-200 г/м3 каждый конвертер оборудуется сложной системой охлаждения и очистки отходящих газов с фильтрами "мокрого" или "сухого" ти­пов.

Продувка в зависимости от интенсивности подачи кислорода (3-7 м3/т мин) и удельного расхода кислорода на процесс 45-55 м3/т продолжается от 10 до 25 мин и должна быть закончена на заданном для выплавляемой марки стали содержании углерода. К этому моменту металл должен быть нагрет до необходимой темпера­туры (1600—1650 °С), а содержание серы и фосфора в нем не должно превышать допустимых для данной марки стали пределов.

Окончив продувку из полости конвертера выводят кислородную фурму и осуществляют отбор пробы металла и шлака на химический анализ, а также измерение температуры металла. При отклонении от заданного состава или температуры металла осуществляют операции по исправлению плавки:

а) при избыточном содержании углерода проводится кратковре­менная додувка, обеспечивающая получение заданного содержания углерода.

б) при излишне высокой температуре проводят охлаждение металла, вводя в него охладители и делая выдержку после их ввода в течение 3—4 мин.

в) при недостаточной температуре металла проводят додувку при повышенном положении фурмы или же вводят в конвертер ферро­марганец или снликомарганец с последующей додувкой;

г) при недостаточном содержании углерода производят науглероживание металла присадками молотого кокса или графита на струю металла при его выпуске в ковш.

После любой корректировки, проведен­ной в конвертере, снова отбирают пробы металла и шлака, изме­ряют температуру.

После выполнения необходимых операций по исправлению плавки конвертер наклоняют, осуществляя выпуск стали в ковш через летку. Выпуск металла совмещается с его раскислением-легированием (присад­кой ферросплавов и алюминия в ковш), поэтому продолжитель­ность этой операции должна быть достаточной для полного расплавления и равномерного распределения в объеме металла вво­димых присадок. Она зависит от вместимости конвертера, но не должна быть < 5 мин. Конвертерный шлак отсекают, забрасывая специальные шары внутрь конвертера в конце выпуска или пода­вая инертный газ в сталевыпускное отверстие снаружи.

Слив шлака осуществляют в шлаковую чашу через горловину конвертера, повернув его в противоположную от выпуска металла сторону (рис. 65д).

Осмотр и подготовка конвертера к очередной плавке сводят­ся к осмотру и восстановлению футеровки, устранению обнаружен­ных повреждений. К обычным повреждениям относятся неизбеж­ный износ (более или менее равномерное разрушение) футеровки и образование настылей, в первую очередь на горловине. Неиз­бежный износ футеровки восстанавливают торкретированием.

Общая длительность плавки в конвертерах емкостью от 50 до 400 т составляет 30—55 мин.



Дутьевой режим плавки


Режим подачи кислорода в конвертерную ванну оказывает большое влияние на длительность продувки, ход шлако­образования, величину входа жидкой стали и ее качество, на стой­кость футеровки конвертера.

Дутьевой режим плавки можно считать оптимальным, если обеспечивается выполнение следующих основных требований: 1) высокая скорость удаления примесей металла (окисления углеро­да) при наиболее полном и примерно постоянном усвоении кисло­рода; 2) быстрое шлакообразование; 3) отсутствие выбросов ме­талла и шлака; 4) минимальное образование выносов и дыма; 5) минимальное содержание газов в конечном металле. Выполнение этих требований возможно лишь при поддержании в заданных пределах основных параметров дутьевого режима, к которым от­носятся интенсивность подачи дутья (продувки), давление и чисто­та кислорода, положение (высота) фурмы над уровнем спокойной ванны и удельный расход кислорода.

Удельный расход кислорода изменяется в пре­делах от 47 до 57 м3/т стали, возрастая при увеличении содержания окисляющихся примесей в чугуне и снижаясь при увеличении доли стального лома в шихте, поскольку лом содержит меньше окисля­ющихся элементов, чем чугун.

Давление кислорода перед фурмой должно быть в определенных пределах. Выходные сопла Лаваля кислородной фурмы преобразуют энергию давления газа в кинетическую. Для достаточного заглубления кислородных струй в ванну и полного усвоения металлом кислорода необходима высокая кинетическая энергия струй, поэтому размеры сопел рассчитывают так, чтобы скорость струи на выходе из них составляла 450—500 м/с. Давление кислорода перед фурмой при этом должно быть 1,2—1,6 МПа.

Высота расположения фурмы имеет оптималь­ные пределы. При чрезмерно высоком расположении фурмы кислородные струи не будут внедряться в металл («поверхностный обдув») и будет низка степень усвоения кислорода; при чрезмерно низком положении («жесткая продувка») усиливается вынос капель металла отходящими газами и абразивный износ фурмы каплями металла, существенно замедляется шлакообразование и др. С учетом этого в конвертерах разной емкости фурму устанавливают на высоте, соответствующей расстоянию до уровня ван­ны в спокойном состоянии от 0,8 до 3,3 м. В этих пределах высота обычно возрастает при увеличении емкости конвертера и за­висит также от конкретных условий работы данного конвертера.

Изменение высоты положения фурмы во время продувки обычно используют для регулирования окисленности шлака и ускорения его формирования.

Интенсивность продувки (в отличие от расхода кислорода в единицу времени, который возрастает при росте емко­сти конвертера и для большегрузных конвертеров достигает 2000 м3/мин), не зависит от емкости; она определяется главным обра­зом конструкцией кислородной фурмы (числом сопел в ней) На разных заводах величина интенсивности J находится в пре­делах 3—5,0 и иногда доходит до 7 м3/т-мин при применении 7-ми сопловых фурм.

Интенсивность продувки J определяет длительность продувки t. Связь между величинами t и J примерно можно вы­разить следующим уравнением: t = Q/J, где Q — удельный расход кислорода, равный как выше отмечалось 47—57 м3/т.

Чистота кислорода оказывает большое влияние на качество стали, поскольку от нее зависит содержание в стали азота. Так, например, при использовании кислорода со степенью чистоты 98,3—98,7 % сталь содержит 0,004—0,008 % N, а при степени чистоты кислорода 99,5—0,002—0,004 % N. Для предотвра­щения насыщения металла азотом необходимо применять кислород c чистотой не менее 99,5 %.



Поведение составляющих чугуна при продувке


Реакции окисления. В течение продувки за счет подаваемого в конвертер кислорода окисляется избыточный углерод, а также, кремний, большая часть марганца и некоторое количество железа.

Для продувки в конвертере характерно прямое окисление железа в зоне контакта кислородной струи с металлом (в «первичной реакционной зоне») и окисление прочих составляющих металла за счет вторичных реакций на границе с первичной реакцион­ной зоной и в остальном объеме ванны.

Соответственно окисление, например, углерода идет по следующим схемам:

Fe + 1/2О2 = FeO; Fe + 1/2О2 = FeO;

FeO = [О] +Fe; FeO = (FeO);

[C] + [О] == CO; [C] + (FeO) = CO + Fe.

Если просуммировать уравнения реакций правого или левого столбцов, то в обеих случаях получим итоговую реакцию окисления углерода: [С] + 1/2О2 = СО, которая, таким образом, отражает лишь начальное и конечное состояние процесса окисления.

Окисление кремния и марганца, так же как и углерода начинается с момента подачи кислорода (рисунок 5), причем весь кремний и большая часть марганца выгорают в первые минуты продувки. Более быстрое их окисление по сравне­нию с углеродом объясняется разли­чием в химическом сродстве разных элементов к кислороду при различных температурах.

clip_image010

Рисунок 5 – Динамика состава металла и шлака в процессе продувки кислородом

На рисунке 6 приведена зависимость химического сродства ряда элементов к кислороду от температуры; при этом величина химического сродства тем больше, чем больше по абсолютной ве­личине отрицательное значение ΔG.

clip_image012

Из рисунка 6 следует, что при температурах ниже 1450—1500 °С кремний и марганец обладают более высоким сродством к кислороду, чем углерод; при более же высоких температурах сродство углерода к кислороду превышает сродство марганца и кремния. В соответствии с этим марганец и кремний окисляются в начале продувки, когда температура в конвертере сравнительно не­высока.

Окисление кремния заканчивается в первые 3—5 мин продувки и в дальнейшем по ходу плавки жидкий металл кремния не содер­жит. Реакция окисления кремния протекает до его полного израсходования и является необратимой, поскольку продукт окисления кислотный окисел SiO2, связывается в основном шлаке в прочное соединение 2CaO-SiO2.

Рисунок 6 – Зависимость ΔG некоторых реакций от температуры

Интенсивное окисление марганца наблюдается в начале продувки, когда при низких температурах его химическое сродство к кислороду велико; к 3—5 мин продувки окисляется около 70 % марганца, cодержащегося в чугуне. В дальнейшем поведение марганца опре­деляется равновесием экзотермической реакции

[Мn] + (FеО) = (МnО) + Fе + 122 950 Дж/моль.

В соответствии с этой реакцией отмечаются (см. рисунок 5) следую­щие особенности поведения марганца: при уменьшении содержа­ния FеО в шлаке во второй половине продувки содержание марганца в металле возрастает; в конце продувки, когда вследствие усиливающегося окисления железа содержание окислов железа в шлаке возрастает, наблюдается вторичное окисление марганца. Конечное содержание марганца в металле зависит прежде всего от его содержания в чугуне и воз­растает при увеличении температуры металла в конце продувки и снижении окисленности шлака. В обычных условиях выплавки рядовых марок сталей к концу плавки в металле остается 20-30% Mn от общего содержания его в шихте.

Окисление углерода в кислородном конвертере происходит преимущественно до СО. В начале продувки (см. рисунок 5), когда интенсивно окисляются кремний и марганец, а тем­пература ванны мала, скорость окисления углерода сравнительно невелика (0,10—0,15 %/мин). В дальнейшем, вследствие повышения сродства углерода к кислороду при росте температуры (см. рисунок 6) и уменьшения расхода кислорода на окисление марганца и кремния, скорость окисления углерода возрастает, достигая к середине про­дувки максимума (0,35—0,45 %/мин). В конце продувки она вновь снижается вследствие уменьшения содержания углерода в металле.

Дефосфорация — то есть удаление из металла в шлак фосфора, осуществляется по экзотермической реакции

2 [Р] + 5 (FeO) + 3 (CaO) = (ЗСаО.Р2О5) + 5Fe + 767 290 Дж/моль,

для успешного протекания которой необходимо повышенные основность и окисленность шлака и невысокая температура.

Дефосфорация начинается сразу после начала продувки (см. рисунок 6), что объясняется быстрым началом формирования основного железистого шлака в конвертере. Поскольку реакция удаления фосфора сопровождается выделением тепла, дефосфорация наиболее интенсивно протекает в первой половине продувки при сравнительно низкой температуре.

В итоге величина коэффициента распределения фосфора между шлаком и металлом (P2O5)/[P], характеризующего результат дефосфорации, изменяется от 40 до 80—100 и в этих пределах обычно тем выше, чем выше основность и окисленность шлака и чем ниже температура металла в конце продувки. Обычно при содержании фосфора в чугуне менее 0,15—0,20 % металл в конце продувки содержит 0,002—0,004 % фосфора.

Десульфурация в кислородном конвертере происходит в течение всей продувки и, главным образом, путем удаления серы из металла в шлак. Вместе с тем, часть серы (менее 10%) удаляется в виде SO2 в результате ее окисления кислородом дутья.

Как известно для успешного протекания реакции десульфурации

[FeS] + (СаО) = (CaS) + (FeO)

необходимы высокая основность шлака и низкое содержание в нем окислов железа. Конвертерный же шлак содержит значительное количество FeO (7—20 % и более), поэтому десульфурация получает ограниченное развитие. Степень десульфурации обычно составляет 30—40 %, а коэффициент распределения серы между шлаком и ме­таллом - (S)/[S] невелик (от 2 до 10).


Шлакообразование и требования к шлаку


Параметры шлакового режима — состав, вязкость, количество шлака и скорость его формирования оказывают сильное влияние на результаты плавки.

Требования к шлаку. Шлаковый режим должен обе­спечить достаточно полное удаление фосфора и серы из металла во время продувки. С этой целью основность шлака должна быть достаточно высокой (от 2,5 до 3,7), а вязкость невелика, так как в густых шлаках замедляются процессы диффузии компонентов, участвующих в реакциях дефосфорации и десульфурации.

Скорость формирования шлака. В связи с кратковременностью продувки чрезвычайно важно обеспечить как можно более раннее формирование шлака.

В кислородно-конвертерном процессе с верхней подачей дутья имеются благоприятные ус­ловия для шлакообразования (растворения извести): 1) высокая температура в шлаковой зоне ванны (до 2000°С), вызываемая взаимодействием струи кислорода с металлом; 2) интенсивное перемешива­ние ванны под действием струи кислорода и выделяющегося из ванны СО; 3) возможность изменения содержания оксидов же­леза в шлаке изменением положения кислородной фурмы отно­сительно поверхности ванны.

Формирование основного шлака сводится к растворению загру­жаемой в конвертер кусковой извести в жидкой шлаковой фазе—продуктах окисления составляющих чугуна (SiO2, MnO, FeO). Известь тугоплавка (тем­пература плавления СаО составляет 2570 °С), поэтому для ее раство­рения необходимо взаимодействие СаО с окислами шлаковой фазы с образованием легкоплавких химических соедине­ний.

Для ускорения шлакообразования в конвертер в начале продувки обычно присаживают плавиковый шпат (CaF2), а также обогащают шлак оксидами железа за счет продувки при повышенном положении фурмы, и иногда за счет присадок железной руды, агло­мерата, окатышей, боксита.

Шлаковый режим. После начала продувки в конвертер вводят первую порцию шлакообразующих — примерно 1/2—2/3 их общего количества. В эту порцию обычно входят известь и плавиковый шпат; иногда вместо плавикового шпата применяют боксит, агломерат, окатыши, железную руду. Оставшееся количество шлакообразующих вводят одной или несколькими порциями в течение 1/3 длительности продувки. Иногда для ускорения шлакообра­зования часть извести (20-40%) загружают в конвертер перед заливкой чугуна.

Общий расход извести составляет 5—8 % от массы плавки; его определяют расчетом так, чтобы обеспечивалась требуемая основность шлака. Расход плавикового шпата обычно составляет 0,15—0,3 % и иногда достигает 1 %.

Кроме плавикового шлака, разжижающего первичные шлаки, для ускорения формирования шлака продувку начинают при повышенном положении фурмы для насыщения шлака оксидами железа.

По ходу продувки состав шлака изменяется: в результате растворения извести содержание СаО в шлаке возрастает, а содержание SiO2, MnO и FeO снижается. Заметно уменьшается содержание FeO в период наиболее интенсивного окисления углерода (середина продувки), когда сильное развитие получает реакция окисления углерода за счет окислов железа шлака. В конце продувки, когда углерода в ме­талле мало, начинает окисляться железо и содержание FeO в шлаках возрастает.


Поведение железа и выход годного металла


В кислородно-конвертерном процессе, как в любом другом сталеплавильном процессе, в зависимости от периода плавки возможно как окисление, так и восстановление железа. Во время присадки твердых окислителей происходит восстановление железа в первую очередь углеродом металла по реакции Fe2O3 + 3[С] = 3{СО} + 2[Fe]. В период интенсивного формирования шлака в начале и конце плавки (при [С] < 0,1%) железо окисляется.

Если рассматривать плавку в целом, то в кислородно-конвертерных процессах наблюдается окисление железа, так как обычно присаживаемое количество оксидов железа в виде твердых окис­лителей (< 1 % от садки) меньше их количества, необходимого для формирования шлака (2-3%), поэтому неизбежные потери железа в результате его окисления и перехода в шлак обычно составляют 0,7-1,5%. Если плавка в целях возможно большей переработки лома ведется без твердых окислителей, то потери железа в результате его окисления повышаются до 1,5-2,0%. Кроме того, же­лезо испаряется и уносится газами в виде частичек Fе2О3 бурого цвета. Средний выход газа в кисло­родных конвертерах составляет - 70 м3/т, а среднее содержание в нем пыли (в основном оксиды железа) 100-150 г/м3, следователь­но, потеря железа в результате испарения в среднем составляет 1-1,5 от массы металла и уменьшаются при сокращении длительности продувки.

Часть железа теряется с корольками железа шлака. Содержание корольков железа в шлаке неиз­бежно и в конечном конвертерном шлаке колеблется в пределах 2-5%. Нижний предел относится к случаям выплавки низкоуглеро­дистой стали (0,5% [С] низкоокисленный шлак). Количество шлака 11-16%, поэтому потери с король­ками составляют > 0,5%.

Вынос мелких капель металла отходящими газами наблюдается в начале продувки, когда поверхность металла не защищена шлаком и усиливается при приближении фурмы к поверхности ванны. В связи с этим следует обеспечивать раннее образование шлака. Общие потери металла с выбросами и выносом составляют в среднем около 1 %.

В целом общие потери железа при плавке стали в конвертерах с верхней подачей дутья обычно 3-4%, но могут достигать >5%, если продувка и шлакообразование протекают не в оптимальном режиме.

Кроме железа в процессе продувки окисляется весь кремний, большая часть углерода и марганца чугуна. Выход жидкой стали (выход годного) при кислородно-конвертерном процессе с учетом всех потерь составляет 88—90 % от массы металлической шихты.


Материальный и тепловой баланс кислородно-конвертерной плавки


Материальный баланс. В оптимальном случае, когда выход металла максимален (90%), а расход чугуна минимален (74%), расход чугуна на 1 т жидкой стали составляет (74:90) х 1000 = 822 кг. Учитывая, что жидкий чугун поступает с некоторым количеством доменного (миксерного) шлака, лом обычно содержит мусор и при разливке неизбежна некоторая потеря металла, для рассматрива­емого случая минимальный фактический расход чугуна составляет ~ 830 кг/т и расход металлошихты (чугуна и лома) 1140-1150 кг/т литой стали. При плавке стали в мартеновских печах расход на 1 т литой стали металлошихты <1135 кг, а расход чугуна может быть снижен до < 500 кг. Таким образом, кислородно-конвертерный процесс отличается от мартеновского не только высоким потребле­нием чугуна, но и металлошихты в целом, т. е. большей емкостью главных видов материальных ресурсов.

Тепловой баланс. Сталь, выпускаемая из конвертера, должна быть нагрета до температуры 1600—1650 °С, в то время как заливаемый в кислород­ный конвертер чугун обычно имеет температуру 1250—1400 °С. Источником тепла для нагрева стали со шлаком, а также для воспол­нения потерь тепла с отходящими газами и через кожух конвертера является тепло, выделяющееся при окислении примесей чугуна.

Расчеты теплового баланса и практика показывают, что общее количество тепла, выделяющегося при окислении примесей чугуна при любом его составе, значительно превышает потребность в тепле для нагрева стали и шлака до температуры выпуска и для компен­сации теплопотерь. В связи с этим при кислородно-конвертерной плавке обязательно применение охлаждающих добавок. Их коли­чество определяется температурой чугуна, содержанием в нем крем­ния и других примесей, а также темпом работы конвертера, поскольку при удлинении пауз между продувками возрастают потери тепла в результате охлаждения конвертера.

В качестве охладителей можно использовать железную руду, стальной лом, агломерат, железо­рудные окатыши, известняк, доломит, известково-рудные брикеты.

Обычно в качестве охладителя применяют стальной лом. Избыточное тепло процесса расходуется при этом на его нагрев и расплавление (1420 кДж на 1 кг лома); расход лома доходит до 25—28 % от массы металлической шихты. Увеличение расхода лома снижает себестоимость стали, а также вызы­вает повышение выхода годного, так как лом содержит меньше, чем чугун примесей, окисляющихся при продувке. Достоинством лома считается также то, что он вносит мало вредных примесей, то есть не требует повышения расхода шлакообразующих.

Недостатком лома является то, что его завалку производят в на­чале плавки, в то время как выделение тепла происходит в течение всей продувки. В связи с этим начало продувки получается «холод­ным». Недостатком считают и то, что его охлаждающее воздействие не затрагивает непосредственно зоны максимальных температур в конвертере — подфурменной реакционной зоны, поскольку лом находится под слоем жидкого чугуна. Затраты времени на загрузку лома и возможность повреждения кусками лома футеровки конвертера также является недостатком этого охладителя.

Железная руда как охладитель применяется сравнительно редко. При использовании руды избыточное тепло расходуется на ее нагрев и восстановление железа из окислов; восстановленное железо несколько повышает выход годной стали. Охлаждающее воздействие руды в 3,0—3,8 раза выше охлаждающего воздействия равного коли­чества лома; расход руды доходит до 8 %.

По сравнению с ломом руда как охладитель имеет ряд преиму­ществ: она обеспечивает охлаждение высокотемпературной подфурменной зоны; для загрузки руды не требуется останавливать продувку; содержащиеся в руде окислы железа ускоряют раство­рение в шлаке извести, т. е. ускоряют шлакообразование; наличие кислорода в руде снижает (на 10—15 %) расход газообразного кислорода.

Недостатки руды. Она вносит в шлак много SiO2, в связи с чем возрастает расход извести и количество шлака, что обычно вызывает уменьшение выхода годного. Кроме того, при большом расходе руды на плавку (> 5— 6 %) и ее введении одной порцией возрастает количество выбросов и снижается выход годного металла.

Применение в качестве охладителей агломерата, окатышей и бри­кетов оказывает такое же охлаждающее действие как и железная руда.

Основной причиной использо­вания лома, а не руды в качестве охладителя является то, что лом заменяет значительное количество дорогостоящего чугуна.

При использовании в качестве охладителей известняка и доло­мита тепло расходуется на разложение содержания в них CaCO3 и MgCO3. Охлаждающая способность доломита и известняка близки к охлаждающей способности руды. Редкое использование этих охладителей связано с тем, что они не увеличивают выход годного металла.


Переработка лома в конвертерах


Основным недостатком конвертерных процессов является низкий расход лома в шихте, обычно составляющий не более 25-28% при средней доле лома в сталеплавильной шихте примерно ~ 45-50%.

Известны различные методы повышения доли лома в шихте кон­вертерных процессов, которые можно объединить в две основные группы: 1) методы, позволяющие лучше использовать тепло самого процесса (дожигание СО до СО, в полости конвертера, исключение применения твердых окислителей, уменьшение потерь тепла во вре­мя перевозок жидкого чугуна, остановок конвертера и т. д.); 2) методы дополнительного подвода тепла, прежде всего нагрева лома в поло­сти конвертера или в специальных устройствах.

Дожигание СО в полости конвертера. Для проведения дожигания в верхнюю часть полости конвертера над ванной подают кислород (через двухъярусную фурму), обеспечивающий протекание реакции: СО + 1/2O2 = CO2; + 282 980 Дж/моль, тепло от которой передается ванне, что и позволяет увели­чить расход охладителя — стального лома. Однако попытки использовать этот источник тепла показали, что реальное увеличение доли лома не превышает 10-15%, а стой­кость футеровки конвертера резко снижается.

Подогрев лома в конвертере сжиганием твердого топлива (кок­са, антрацита). Кусковой каменный уголь (антрацит) или кокс загружают в конвертер на стальной лом или после заливки чугуна и начала продувки.

При расходе угля около 1 % от массы шихты уменьшается расход чугуна на 2,5—3,5 % (от массы шихты), но в то же время возрастает длительность плавки, что снижает производительность конвертера примерно на 6 %. Недостатки – увеличение продолжительности плавки и наличие серы в топливе.

Вдувание пылевидного угля. Молотый каменный уголь или кокс вдувают в ванну в струе кислорода, подаваемого через фурму сверху или через донные фурмы. Тепло, выделяющееся при окислении вводимого углерода позволяет увеличить расход лома. Способ часто применяют в сочетании с подачей кислорода в верхнюю полость конвертера для дожигания СО до CO2 при такой комбинированной технологии доля стального лома в шихте может быть увеличена до 50 % и более. Недостаток – усложнение конструкции

Подогрев лома в конвертере сжиганием газообразного или жидкого топлива. Загруженный в конвертер стальной лом подогре­вают с помощью топливно-кислородной горелки, после чего заливают жидкий чугун и проводят плавку по обычной технологии. При этом достигают увеличения количества стального лома в шихте на 4—9 % (от массы шихты); длительность подогрева на разных заводах состав­ляет 8—18 мин, расход природного газа 5—13 и кислорода на нагрев 15—20 м3/т стали.

Для повышения доли лома в шихте иногда применяют ферросилиций, карбиды кремния (SiC) и кальция (СаС2). Эти матери­алы, загружаемые с ломом, во время продувки окисляются со значи­тельным тепловым эффектом. Однако они дороги и дефицитны, поэтому их систематическое применение бесперспективно.

Предварительный подогрев лома вне конвертера в простых устройствах (совках и ковшах) малоэффективен, поскольку в них удается нагреть лом только до 500-600°С, а сооружение специаль­ных устройств, более совершенных в теплотехническом отношении, увеличивает капитальные и текущие затраты.


Конвертерные процессы с донной продувкой кислородом


Первые попытки замены воздушного дутья в бессемеровском и томасовском процессах не дали положительных результатов из-за отсутствия технологии продувки, обеспечивающей высокую стойкость днища конвертеров. Однако разработка способов донной продувки металла кислородом продолжалась, поскольку широкое промышленное применение процесса с верхней подачей дутья выявило его серьезные недостатки, к которым прежде всего относятся:

1 Высокие потери железа с отходящими газами, шлаком, выбросами и выносами.

2 Неполное и непостоянное от плавки к плавке усвоение вдува­емого кислорода ванной.

3 Большая дополнительная высота, требующаяся для размеще­ния кислородных фурм.

Для исключения указанных недостатков разрабатывались воз­можности применения донного кислородного дутья. Задача состояла в том, чтобы предотвратить активное взаимодействие струй кислоро­да с металлом непосредственно у выхода из фурм, т.е. отодвинуть вглубь металла реакционную зону, имеющую очень высокую темпе­ратуру (>2000°С) и значительное содержание оксидов железа, а по­этому вызывающую интенсивное разрушение (эрозию) днища.

Проводившиеся впоследствии в ряде стран исследования привели к разработке пригодного для промышленного использования метода введения кислорода снизу в виде струй, окруженных коль­цевой защитной оболочкой из углеводородов. Кольцевая оболочка предотвращает контакт кислорода с чугуном у фурм и обеспечивает охлаждение околофурменной зоны.

Охлаждение околофурменной зоны происходит потому, что на выходе из фурмы протекает ряд эндотермических процессов: разложение углеводородов (CН4=С+2Н2-Q); растворение углерода в металле с поглощением тепла (С=[С]-Q); неполное сгорание углеводородов (CH4+1/2O2= CO+2{H2}- Q.

Отвод реакционной зоны вглубь металла происходит потому, что газ, будучи восста­новителем, предотвращает окисление железа вдуваемым кислоро­дом непосредственно у фурм.

При таких условиях в нижней части реакционной зоны не развивается очень высокая температура и не образуются оксиды железа, поэтому не наблюдается интенсивного износа фурм и днища уже при расходе топлива ~ 5 % от расхода кислорода (максимальный расход ~ 10 %).

В качестве источника углеводородов для создания защитной оболочки вокруг кислородной струи в конвертер подают тонкий слой природного газа (его основу составляет ме­тан СН4), пропана (C3H8) и иногда жидкого топлива (сложные углеводороды типа СmНn). Расход природного газа составляет 6—8, пропана около 3,5 % от расхода кислорода.

Устройство конвертера

Конвертеры для донной кислородной продувки имеют отъемное днище, а в остальном схожи с конвертерами, применяемыми при верхней продувке кислородом. В днище в зависимости от емкости конвертера устанавливают от 7 до 22 фурм. Каждая фурма состоит из двух концентрически расположенных труб; по средней трубе из нержавеющей стали или меди с внутренним диаметром 24—50 мм подают кислород, внешняя труба из нержавеющей стали образует кольцевой зазор толщиной 0,5—2 мм вокруг наружной. Через зазор подается защитная среда — газообразные или жидкие углеводороды.

Технология плавки – отличительные особенности

Шлакообразование при донной подаче дутья и использовании кус­ковой извести ухудшается вслед­ствие снижения температуры шлака и содержания в нем оксидов желе­за. Снижение температуры шлака вызвано перенесением высокотем­пературной реакционной зоны из верхних горизонтов ванны в объем металла. В этих условиях температура шлака близка к температуре металла, которая в первой половине плавки < 1500°С.

Уменьшение содержания оксидов железа связано с интенсифи­кацией перемешивания металла и шлака и более восстановитель­ным характером газовой фазы (содержание СО2 в газовой фазе при верхнем дутье - 10 %, а при донной не более 3-4%). В этих концентрация оксидов железа обычно не превышает 5-6% (при верхней продувке 15-20%).

Поэтому нормальная выплавка углеродистой стали в конвертерах с донной подачей кислорода воз­можна только при использовании порошкообразной извести, вду­вая ее также снизу в струе кислорода. В этом случае создаются благоприятные условия для шлакообразования, особенно в началь­ной стадии этого процесса.


Поведение примесей


За время продувки окисляется избыточный углерод, кремний, часть марганца; формируется шлак, в который удаляются фосфор и сера; расплавляется стальной лом; за счет тепла реакций окисле­ния нагревается металл. Вначале, как и при продувке сверху, пре­имущественно окисляются кремний и марганец. Вместе с тем для процесса характерен ряд отличий, связанных прежде всего с тем, что при подаче дутья через несколько фурм снизу обеспе­чивается резкое усиление интенсивности перемешивания ванны.

В этих условиях существенно увеличивается поверхность контакта металл—газ и металл-шлак, что ведет к снижению окисленности шлака. Поэтому содержание FeO в шлаке по ходу продувки не превышает 5—6 %.

Из-за низкого содержания FeO в шлаке реакция окисления мар­ганца [Мn] + (FeO) = (MnO) + Fe получает ограниченное разви­тие и количество окисляющегося за время продувки марганца (30-40 %) меньше, чем при верхней продувке (70-80%).

Окисление фосфора. При донной подаче дутья с применением порошкообразной изве­сти дефосфорация протекает несколько полнее, чем при верхней подаче дутья.

Удаление серы. При донной подаче дутья с порошкообраз­ной известью возрастает коэффициент распределения серы меж­ду шлаком и металлом (при В= 3-3,5 Lg= 6-8, может достигать 10), и доля серы, переходящей в газовую фазу (15-20%), поэтому общая степень десульфурации (переход в шлак и газовую фазу) уве­личивается и обычно составляет 50-60% (при верхней подаче дутья 30-50%).

Особенностью процесса является то, что водород, обра­зующийся в результате термического разложения вдуваемых угле­водородов, растворяется в металле и в конце продувки содержание водорода достигает 6—9 см3 на 100 г металла, что недопустимо для сталей многих марок. Для удаления избыточного водорода перед выпуском проводят кратковременную (в течение 10—60 с) продувку металла аргоном; содержание водорода при этом сни­жается до 2—4 см3 на 100 г.металла.

Длительность продувки в зависимости от интенсивности подачи кислорода изменяется от 8 до 14 мин, удельный расход кислорода 45-55 м3/т, природного газа 4—5 м3/т, пропана 1,5 м3/т, жидкого топлива 2—3 л/т. Расход азота на продувку металла и на подачу в межплавочные периоды через фурмы с целью их охлаждения дости­гает 15—20 м3/т.

Тепловой баланс плавки при донной подаче дутья, несмотря на введение некоторого количества топлива, ухудшается. Это связа­но в основном с тем, что сжигание топлива происходит неполно, выделяющееся тепло обычно не компенсирует затраты тепла на разложение углеводородов; кроме того, уменьшается окисление железа. Вследствие этого доля лома в шихте при донной подаче дутья снижается на 2-5% по сравнению с верхней подачей.


Сравнение процессов с верхней и донной продувкой кислородом


Конвертерный процесс с донной подачей кислорода по сравнению с верхней подачей дутья, обладая значи­тельно лучшими условиями взаимодействия дутья с ванной, имеет следующие основные преимущества:

1) в 3—5 раз уменьшаются потери железа с отходящими газами, поскольку наиболее крупные частицы бурого дыма (Fе2О3) поглощаются при прохождении через слой металла и шлака

2) почти отсутствуют потери с выбросами из-за более спокойного хода продувки;

3) в 1,5—2 раза уменьшаются потери железа со шлаком вследствие меньшего содер­жания в шлаке окислов железа;

4) увеличивается выход жид­кой стали на 1,5-2% из-за п.1-3;

5) повышается и стабилизируется степень усвоения кис­лорода ванной, что облегчает управление процессом;

6) появляется возможность повышения интенсивности продувки, следовательно, производительности конвертера на 5-10%;

7) уменьшение расхода кислорода, объясняемое лучшим (на 5—10 %) его использованием в связи с тем, что окисляется меньше железа и меньшее количество углерода окисляется до СО2 (в отходящих газах содержится <5 % СО2, тогда как при продувке сверху до 10—15 %);

8) уменьшение количества окисляющегося при продувке марганца, что ведет к экономии ферромарганца;

9) более высокая степень дефосфорации и десульфурации;

10) уменьшается поглощение азота дутья вследствие понижения тем­пературы в зоне взаимодействия кислорода и металла;

11) создаются благоприятные условия для организации вдувания в ванну различных инертных газов (аргона, азота) и порошкообразных материалов (из­вести, графита, угля и др.).

12) уменьше­ние высоты конвертерной установки из-за отсутствия вертикально-перемещаемых фурм, что упрощает сооружение конвертерного цеха;.

Вместе с тем, для процесса с донной продувкой кислородом харак­терны следующие недостатки:

- необходимо применение порошкообразной извести, что требует специального оборудования для ее помола и вдувания;

- необходима продувка металла инертным газом для удаления водорода, а также подача через фурмы инертного газа или воздуха в межплавочные периоды для охлаждения фурм;

- усложняется конструкция и эксплуатация днища с системой подвода кислорода, защитной среды, инертного газа и измельченной извести;

- возникают простои конвертера при замене днищ, которая длится 8—20 ч;

- на 2—5 % уменьшается количество перерабатываемого лома, что связано с затратой тепла на разложение углеводородов и умень­шением прихода тепла от окисления железа (в шлак) и в результате уменьшения доли углерода, окисляющегося до CO2;

- необходимы специальные устройства для улавливания дыма и вы­носимых из конвертера капель металла при его наклоне.

Конвертерный процесс с донным топливно-кислородным дутьем хотя и имеет ряд преимуществ по сравнению с процессом с верхней подачей дутья, однако его применение целесообразно лишь в спе­цифических условиях: при переделе высокофосфористых и ванадийсодержащих чугунов, а также при выплавке особонизкоуглеродистой стали (< 0,05% С) из любого чугуна. При переделе обычных чугунов на сталь с нормальным содержанием углерода предпочти­тельна верхняя подача дутья, поскольку можно работать на куско­вой извести и обеспечить стойкость футеровки конвертера на порядок выше.


Конвертерные процессы с комбинированной продувкой


Желание совместить преимущества конвертерных процессов с верхней и донной продувкой послужило основанием для разработки в последние годы технологии конвертерного процесса с комбинированной продувкой сверху и снизу.

Конвертерный процесс с комбинированной (верхней и дон­ной) подачей кислорода обладает наибольшими технологически­ми возможностями, но по конструкции агрегата и системы его обеспечения является самым сложным. Для максимального ис­пользования преимуществ верхнего и донного дутья необходи­мо обеспечить подачу в конвертер: сверху - кислорода, куско­вой извести и других флюсов; через дно - кислорода, защитного топлива, нейтрального газа, воздуха (для защиты фурм от затекания и забивания в межпродувочные периоды) и порошкообраз­ной извести.

Получает распространение ряд разновидностей комбинированной продувки, которые помимо подачи кислорода через фурму сверху могут включать:

- вдувание инертных газов через пористые огнеупорные элементы в днище

- вдувание через донные фурмы смеси кислорода и инертного газа в кольцевой оболочке из углеводородных или нейтральных газов;

- вдувание через донные фурмы воздуха в кольцевой оболочке из инертных газов;

- подача части кислорода через донные фурмы в кольцевой обо­лочке из углеводородных или нейтральных газов

- перечисленные выше способы с дополнительным вдуванием извести через днище.

Наибольшее распространение получил конвертерный процесс с верхней подачей кислорода и донной подачей нейтрального газа через фурмы. Такая технология значительно проще, чем с комбинированной подачей кислорода, но позволяет сохранить основ­ное преимущество донной продувки - хорошее перемешивание ван­ны и связанные с ним технологические преимущества. Донные фур­мы изготавливают из коррозионностойкой стали в виде одной трубы или двух (труба в трубе с заглушенной внутренней трубой). Их диа­метр и число зависит от принятой интенсивности продувки. Удельная интенсивность подачи нейтрального газа может изменяться в широ­ких пределах: от 0,01-0,10 м3/т-мин до 3-4 м3/т-мин). Для увеличения расхода лома верхнюю фурму выполняют двухъярус­ной, что обеспечивает дожигание СО в полости конвертера. В качестве нейтрального газа обычно используют азот, посколь­ку инертный газ (аргон) дорог. Продувка металла азотом в течение всей плавки приводит к повышению содержания его в металле, кото­рое зависит от интенсивности донной продувки. При минимальной ин­тенсивности продувки поглощение азота незначительно и возможно достижение содержания его в готовой стали не более 0,003-0,004%. При необходимости снижения содержания азота в готовом металле в конце плавки ванну продувают аргоном. В межпродувочные пери­оды донные фурмы обычно переводят на воздушное дутье, посколь­ку оно дешевле азота.

Донная подача нейтрального газа может осуществляться также через пористые огнеупорные блоки. На­правленные каналы в огнеупорных блоках имеют небольшой диаметр (<2 мм), металл и шлак в них не затекают, поэтому продувку нейт­ральным газом можно вести не в течение всей плавки, а тогда, когда это необходимо. Обычно продувку нейтральным газом начинают за несколько минут до окончания кислородной продувки и заканчивают через несколько минут после окончания продувки кислородом. При удельной интенсивности продувки до 0,2-0,3 м3/т-мин) обеспечивает­ся снижение окисленности шлака и металла, при необходимости глубокое обезуглероживание, а также дополнительная дефосфорация и десульфурация металла.


Выплавка стали в подовых сталеплавильных агрегатах


Еще в начале 18 века была предложена идея выплавке стали в отражательных печах, которая воплотилась в 1784 году с появлением так называемой пудлинговой печи. Однако, в таких печах сжигание топлива даже с высокой теплотой сгорания при подаче холодного воздуха не могло обеспечить температуру в плавильном пространстве более 1420—1460 °С. При этой температуре только металл, содержащий >1,5 % С, может нахо­диться в жидком состоянии, но для разливки его в слитки нужно иметь более высокую температуру (на 60—80 °С). Недостатком металлургической техники того времени было также низкое качество огнеупорных материалов. В связи с этим до середины 19 века основным способом получения высокоуглеродистой стали в ничтожно малых количествах был тигельный процесс.

Получить сталь в жидком состоянии путем сплавления чугуна и скрапа впервые удалось П. Мартену, использовавшему тепло отходящих из плавильного пространства продуктов сгорания для подогрева газообразного топлива и воздуха, расходуемого для его сжигания (принцип регенерации тепла).

Таким образом, появилась возможность переплава отходов самого металлургиче­ского производства (стальной скрап), которые невозможно перерабатывать в бессемеровских конвертерах (1855г).

В конце пятидесятых годов в СССР и в некоторых других странах появился и был реализован новый метод использования тепла отходящих из плавильного про­странства продуктов сгорания топлива для нагрева скрапа. Так появился новый подовый сталеплавильный агрегат — двухванная печь.

Принцип работы мартеновской печи

Для того, чтобы выпустить из печи и разлить сталь, в зависимости от химического состава и способа разливки, ее следует нагреть до 1600—1650 °С. Металл может быть нагрет до этой температуры, если продукты сгорания факела имеют еще более высокую (на 100—150 °С) температуру.

Таким образом, температура факела должна быть не менее 1750—1800 °С. Теоретическая температура горения любого топлива определяется урав­нением

tт = (Qт + Qгф)/Cпс Vпс,

где Qт — теплота сгорания топлива;

Qгф — физическое тепло нагретых воздуха и горючих газов;

Vпс — объем продуктов сгорания;

Cпс — их средняя теплоем­кость.

Из уравнения следует, что повысить теоретическую температуру факела можно при использовании топлива с высокой теплотой сгорания (мазута, природного газа), повышении температуры подогрева воздуха и уменьшении объема продуктов сгорания Последнее достигается обогащением кислородом воздуха для сжигания топлива, что приводит к уменьшению количества балластного азота в продуктах сгорания. Эта идея широко применяется в настоящее время на большинстве отечественных заводов. Содержание кислорода в воздухе увеличивают от 21 до 25—30 %. Роль подогрева воздуха в тепловой работе печи при этом умень­шается, хотя воздушные регенераторы остаются.


Устройство мартеновской печи


Мартеновская печь состоит из верхнего и нижнего строений. Верхнее строение печи, расположенное над рабочей площадкой цеха, состоит из рабочего пространства, головок и вертикальных каналов Плавильное (или рабочее) простран­ство ограничено передней стенкой с завалочными (рабочими) окнами, задней стенкой с выпускным отверстием, подом и сводом. В торцах плавильного пространства рас­положены головки, служащие для подвода топлива и воздуха и отвода из плавильного пространства продуктов сгорания. Головки соединяются с нижним строением печи вертикальными каналами. Нижнее строение печи расположено под рабочей площад­кой цеха и состоит из шлаковиков, предназначенных для отделения от дымовых газов частичек уносимых ими из плавильного пространства шлака и пыли, регене­ративных камер и боровов с перекидными клапанами. В регенераторах осуще­ствляется подогрев воздуха до поступления в плавильное пространство Тепло для их нагрева отдают дымовые газы, периодически проходящие через регенераторы Направление движения дымовых газов, воздуха и топлива регулируется поочеред­ным открытием тех или иных перекидных (пусковых) клапанов.

Проходя через предварительно нагре­тую насадку регенератора воздух нагревается до 1000—1200 °С и в нагретом состоянии через «головку» попадает в печь.

В рабочем пространстве печи происходит смешение топлива с воздухом и сгора­ние его с образованием факела пламени, имеющего температуру 1800—1900 °С

Продукты сгорания (дым) с температурой 1650—1700 °С поступают в каналы противоположной головки, затем в вертикальные каналы, в шлаковики и ре­генераторы (с температурой 1500—1550 °С).

По исте­чении определенного промежутка времени (5—20 мин) после нагрева насадки регенератора и соответствующего охлаждения противоположной насадки регенератора произ­водится изменение направления движения воздуха на обратное при помощи пере­кидных клапанов. Операцию изменения направления газов с помощью клапанов назы­вают «перекидкой клапанов».

Из рабочего пространства печи дымовые газы выходят с темпера­турой 1680—1750 °С, из шлаковика в регенератор — с температурой 1500—1550 °С. Пройдя насадку регенератора, они охлаждаются до 500—700 °С. Обычно стремятся использовать тепло отходящих газов, направляя их по системе боровов в котел-утилизатор. Если по каким-либо причинам котел-утилизатор не установлен или на­ходится на ремонте, дымовые газы по боровам направляют в трубу.


Конструкция отдельных элементов мартеновской печи


Рабочее пространство печи

Рабочее пространство мартеновской печи ограничено сверху сводом, снизу — подом (или «подиной»). На границе задней стенки и подины предусмотрено отверстие для выпуска плавки (сталевыпускное отверстие). В передней стенке печи имеются проемы — завалочные окна, через которые в рабочее пространство загружают твердую шихту и заливают (по приставному желобу) жидкий чугун.

Из всех элементов печи рабочее пространство находится в наи­более тяжелых условиях — в нем идет плавка стали. Во время за­валки твердой шихты огнеупорные материалы, из которых изгото­влено рабочее пространство, подвергаются резким тепловым и меха­ническим ударам, во время плавки они подвергаются химическому воздействию расплавленных металла и шлака; в рабочем простран­стве максимальная температура.

В соответствии с этим к огнеупорным материалам рабочего про­странства предъявляют высокие требования: а) высокая огнеупорность; б) химическая устойчивость против воздействия шлака, металла и печных газов; в) достаточная механическая прочность при высоких температурах; г) хорошая термостойкость при колеба­ниях температуры.

По химическим свойствам применяемые огнеупорные материалы делят на: а) кислые — динасовый кирпич, кварцевый песок; б) основ­ные — магнезитовый кирпич, магнезитовый порошок, доломит; в) нейтральные (со свойствами амфотерных окислов) — шамот, хромо­магнезит, магнезитохромит, высокоглиноземистый шамот, форстерит.

Подина печи

Огнеупорные материалы, применяемые при изготовлении подины мартеновской печи, должны соответствовать типу шлака, под которым проводится плавка (рисунок 8). В противном случае в результате энергичного взаимодействия шлака с огнеупорным материалом подина печи ошлакуется, то есть перейдет в шлак и печь выйдет из строя.

clip_image016

1 — наварка (кварцевый песок); 2 – наварка (магнезитовый порошок или молотый обожженный до­ломит); 3 — магнезитовый кирпич; 4 — динасовый кирпич; 5 — стальной лист; 6 — тепловая изоляция (пористый шамот); 7 — ша­мотный кирпич

Рисунок 8 - Устройство кислого и основного подов мартеновской печи

Задняя и передняя стенки мартеновской печи работают (особенно в нижней части) почти в тех же условиях, что и подина, так как они также соприкасаются с жидким металлом и шлаком. Заднюю и переднюю стенки кислой мартеновской печи выкладывают из динасового кирпича, основной мартеновской печи — из магнезитового.

Изношенные участки футеровки (особенно зону шлакового пояса) ремонтируют после каждой плавки (эту опе­рацию называют заправкой печи): на изъеденные места кислой по­дины набрасывают песок, а основной подины — магнезитовый или доломитовый порошок. Заправке подвергают также и торцовые части подины, прилегающие к головкам печи; их называют откосами.

Свод печи

Свод мартеновской печи практически не соприкасается со шла­ком, поэтому его можно изготовлять из кислых и основных огнеупор­ных материалов независимо от типа процесса. Своды мартеновских печей изготовляют из динасового или термостойкого магнезито-хромитового кирпича.

Динасовый кирпич при высоких температурах (до 1700 °С) сохра­няет достаточную прочность и повышенное сопротивление сжатию. Во время эксплуатации динасовые кирпичи свода свариваются в мо­нолит, что позволяет выполнять его самонесущим (в виде акрки) и гарантирует его надежность даже в случае, если какой-либо кусок свода упадет. Однако при нагреве свыше 1700 °С динасовый кирпич быстро оплавляется; кроме того, он сильно разъедается плавильной пылью, состоящей из окислов железа (образуются легкоплавкие силикаты железа).

Магнезитохромитовый кирпич характеризуется более высокой огнеупорностью (допустимая температура нагрева 1800 °С), что способствует повышению производительности печи. Стойкость свода из магнезито-хромитового кирпича в 2—3 раза выше, чем из динасового. Особенности эксплуатации свода из магнезито-хромитового кирпича: а) кирпичи плохо свари­ваются и не образуют монолита; б) коэффициент расширения магнезито-хромитового кирпича выше, чем динасового, в результате чего при разогреве арки свода наружные швы раскрываются, а на вну­тренней стороне возникают высокие напряжения сжатия, что при­водит к сколу внутренней части свода; в) повышенная теплопровод­ность и большие неплотности кладки (раскрытые швы) обусловливают более высокие (почти в два раза) потери тепла с 1 м2 площади свода; г) объемная масса магнезитохромитового кирпича в 1,5 раза больше, чем динасового. Все это исключает возможность применения обычного арочного свода. Свод приходится выполнять распорно-подвесным с креплением и прокладками между кирпичами, а это усложняет и удорожает конструкцию.

Однако возможность повысить температуру в печи при исполь­зовании магнезитохромитового свода, а также увеличить срок службы свода делает устройство сложной системы подвесок рентабельным, поэтому своды такого типа нашли широкое применение.

Стойкость магнезитохромитового свода составляет 500—1000 пла­вок (динасового 200—350 плавок).

Головки печи

Головки служат для подвода топлива и воздуха и отвода из плавильного пространства продуктов сгорания. От того, с какой скоростью вводят в рабочее пространство воздух и топливо и насколько хорошо струи топлива и воздуха пере­мешиваются, зависят форма и ряд других характеристик факела, а от факела зависит и вся работа печи.

Головки должны обеспечить: 1) хорошую настильность факела по всей длине ванны (чтобы максимум тепла передать ванне и мини­мум — своду и стенкам); 2) минимальное сопротивление при отводе продуктов сгорания из рабочего пространства; 3) хорошее переме­шивание топлива и воздуха для полного сжигания топлива в рабочем пространстве печи.

Чтобы удовлетворить первому и третьему требованиям, сечение выходных отверстий должно быть малым (чтобы скорости ввода воздуха и топлива были максимальными); для удовлетворения второго требования сечение, наоборот, должно быть максимальным. Поэтому, в зависимости от условий работы, выбирают промежуточный вариант.

Шлаковики

Отходящие из рабочего пространства печи дымовые газы про­ходят через головку и по вертикальным каналам попадают в шлаковики (рисунок 9).

clip_image018

1 - вертикальные каналы; 2 — шлаковик; 3 — насадки регенераторов, 4 — подвес­ной свод наднасадочного пространства; 5 — поднасадочные пространства

Рисунок 9 - Устройство шлаковиков и регенераторов мартеновской печи

Шлаковики служат для улавливания плавильной пыли и шлаковых частиц, уносимых продуктами сгорания из рабочего пространства, и тем самым предохраняют насадки регенератора от засорения. Сечение шлаковика гораздо больше сечения вертикального канала, поэтому при попада­нии дымовых газов в шлаковик их скорость резко уменьшается и, кроме того, меняется направление движения газов. Это приводит к тому, что значительная часть (50—75 %) плавильной пыли оседает в шлаковиках, причем оседает крупная пыль, более мелкие фракции в значительной степени уносятся в трубу (10—25 % пыли оседает в насадках регенераторов).

На пути движения дымовых газов плавильная пыль, содержащаяся в них, реагирует с материалами кладки. Это обстоятельство приходится учитывать при выборе материалов для кладки вертикальных каналов и шлаковиков.

Почти вся пыль представляет собой основные окислы (в том числе 60—80 % окислов железа). Если вертикальные каналы и шлаковики футерованы динасовым кирпичом, то основные окислы, из которых состоит пыль, энергично взаимодействуют с кислым мате­риалом футеровки с образованием легкоплавких силикатов железа. Стойкость футеровки оказывается недостаточной и, кроме того, осе­дающая в шлаковиках пыль образует плотный монолит, который во время ремонта очень трудно извлекать.

В связи с этим для кладки вертикальных каналов и шлаковиков часто применяют термостойкий магнезитохромитовый кирпич.

Регенераторы

Из шлаковиков отходящие газы при температуре 1500— 1550 °С попадают в насадки ре­генераторов (рисунок 9).

Регенераторы должны обес­печивать более или менее по­стоянную высокую температуру подогрева газа и воздуха. В наиболее тяжелых условиях ра­ботают верхние ряды насадок, поскольку в этой части темпе­ратура и содержание пыли наи­более высоки. Поэтому верхние ряды насадок выкладывают из термостойкого магнезитохромитового кирпича. Нижние ряды насадок рабо­тают при температурах менее 1000—1200 °С, поэтому их выклады­вают из более дешевого и в то же время прочного шамотного кирпича.

Из поднасадочного пространства отходящие газы при темпера­туре 500—700°С попадают в борова, которые предназначены для подвода к регенераторам газа, воздуха и отвода от них продуктов сгорания к трубе или к котлу-утилизатору. Кладка боровов обычно состоит из двух слоев: внутреннего, выполняемого из шамотного кирпича, и внешнего — из обычного красного кирпича.


Основные особенности и разновидности мартеновского процесса


Мартеновский процесс возник как способ получения стали путем сплавления лома и чугуна на подине отражательной печи. Это предопределило главную его особенность - недостаток собствен­ного тепла процесса для проведения плавки. Для плавления твер­дых шихтовых материалов и нагрева жидкого металла и шлака до заданной температуры, а также для компенсации значительных тепловых потерь, вызываемых большой продолжительностью плав­ки, недостаточно физического и химического тепла шихтовых ма­териалов.

Сгорание топлива должно происходить в пределах рабочего пространства, иначе оно заканчивается в вертикальных каналах и регенераторах, что в значительной степени снижает стойкость этих элементов печи и повышает расход топлива. Для того, чтобы сго­рание топлива завершилось в рабочем пространстве печи, расход воздуха должен превышать теоретически необходимое количество для полного сгорания, поэтому коэффициент избытка воздуха составляет обычно 1,15-1,20. Продукты сгорания любого топлива будут состоять из окислительных газов СО2, Н2О, О2 и некоторого количества нейтрального азота N2. Таким образом, характер атмосферы мартеновской печи во все периоды плавки окислитель­ный. Это одна из особенностей мартеновского процесса.

Другой особенностью технологии мартеновской плавки яв­ляется то, что тепло к ванне поступает сверху, а отводится снизу че­рез подину, поэтому температура шлака выше, чем металла, и по глубине ванны имеется различие в температуре металла. Толщина шлака в мартеновских печах колеблется от 50 до 500 мм, глубина ванны металла — от 500 до 1500 мм (в зависимости от ем­кости и конструкции печи). При этом выравниванию температуры по глубине ванны способствуют пузырьки СО, выделяющиеся в результате окисления углерода и приводящие к «кипению» ванны. Однако некоторый перепад температур по глубине ванны все же сохраняется, особенно между шлаком и металлом. В начале доводки этот перепад составляет 70—100, а в конце 20—50 °С. По длине печи температура металла также неодинакова. Под факелом температура металла несколько выше, чем у отводящих головок.

Четвертая особенность технологии мартеновской плавки — уча­стие пода печи в протекающих процессах. В отличие от плавки в кон­вертерах, продолжающейся всего 15—30 мин, плавка в мартеновской печи продолжается много часов. Поэтому влияние взаимодействия металла с подиной оказывается очень ощутимым.

Пятая особенность технологии мартеновской плавки заключается в том, что жидкий металл все время находится под слоем шлака (шлак примерно вдвое легче металла). Практически все вво­димые в печь добавки попадают на шлак или проходят в металл через шлак. Кислород из атмосферы печи в металл переходит также через шлак. Если учесть, что тепло от факела к металлу также передается через шлак, то становится понятной огромная роль шлака в марте­новском процессе. По существу руководство ходом плавки заклю­чается в том, что меняют состав, температуру и консистенцию шлака и таким образом добиваются получения металла нужного состава и качества.

Непосредственное окисление металла (железа и его примесей) кислородом газовой фазы наблюдается в мартеновских процессах только в период завалки, прогрева и плавления шихты, а также может иметь место в период интенсивного кипения, когда капли металла выбрасываются в газовую фазу. По мере окисления железа и входящих в состав шихты примесей железа образуется шлак, обладающий окислительными свойствами. Он становится передаточным звеном в системе газовая фаза-металл.

Процесс перехода кислорода из газовой фазы в металл происходит непрерывно. За плавку ванна поглощает от 1 до 3 % кислорода от массы ме­талла. Соотношение между поступающим кислородом и потребностями в нем может быть раз­личным. Это различие главным образом зависит от доли чугуна в шихте и определяет основные разновидности (ва­рианты) мартеновского процесса: рудный, скрап-рудный процесс, скрап-процесс и скрап-угольный мартеновский процесс.

В том случае, когда поступление кислорода из газовой фазы больше потребностей в нем, избыточный кислород должен быть связан карбюратором, и процесс называется карбюраторным (скрап-угольным). Если поступление кислорода равно потребностям, в этом слу­чае процесс называется скрап-процессом. Когда потребность в кислороде значительно больше количества, поступающего из обя­зательных источников, то недостающий кислород вводят с же­лезной рудой или ее заменителями в самом начале процесса (в завалку). Такой процесс называется скрап-рудным. При исполь­зовании 100% чугуна процесс называется рудным.

Скрап-рудный процесс является одним из самых распростра­ненных вариантов мартеновского процесса. Особенность его состоит в том, что основной составляющей металлической части шихты является в основном жидкий чугун. Доля чугуна в шихте колеблется в основном в пределах 50-70%. Для ускорения (интенсификации) окисления элементов ших­товых материалов в печь загружают железную руду, кислород которой расходуется на окисление части примесей. Загружается руда до заливки чугуна (обычно под слой лома) и по ходу плавки (в период полировки). Благодаря восстановлению железа руды увеличивается выход годного. Если при высоком расходе чугуна в мартеновских печах процесс вести без интенсификации твер­дыми окислителями, то продолжительность плавки увеличивает­ся вследствие недостаточной скорости поступления кислорода из газовой фазы печи.

Скрап-процесс обычно распространен на заводах, не имеющих доменного производства. В этом случае основной составляющей металлической шихты является металлический лом. Доля чугуна, твердого или редко жидкого, обычно составляет 25-45%. Желез­ную руду, если и дают, то в незначительных количествах (обычно 1-2%) только по ходу плавки (в период доводки), а не в период завалки. Таким образом, основным источником кислорода являет­ся газовая фаза.

Карбюраторный (скрап-угольный) процесса представляет рабо­ту печи на малом расходе (10-15 %) чугуна или только на ломе. При этом содержание углерода в исходной шихте оказывается значительно меньше, чем требуется для нормального ведения процесса, поэтому в шихту вводят углеродсодержащие материалы (карбюраторы), которыми обычно являются антрацит, кокс, графит, каменный или древесный уголь и т. п.


Основные периоды мартеновской плавки и их значение


Процесс выплавки стали в мартеновской печи при любой раз­новидности его включает следующие основные периоды: заправ­ка печи; завалка и прогрев твердых шихтовых материалов; заливка жидкого чугуна (завалка твердого чугуна) и плавление; доводка плавки; раскисление и легирование металла; выпуск металла и шлака.

Заправка печи производится для восстановления изношенных за время плавки участков наварки передней и задней стенок и откосов. Лучшее приваривание заправочных материа­лов наблюдается при высокой температуре рабочего пространства, поэтому заправка задней стенки выше уровня продуктов плавки производится в период доводки предыдущей плавки; заправка откосов на уровне шлака и ниже производится во время выпуска плавки.

Завалка твердых шихтовых материалов с помощью специальных мульдозава­лочных машин: стальной скрап, желез­ную руду, а также твердый чугун. Порядок завалки и расположение шихты в печи влияют на скорость плавления шихты, шлакообразова­ние и стойкость печи. При работе скрап-рудным процессом завал­ка осуществляется в следующем порядке. На подину равномерным слоем загружают часть железной руды (агломерата, окатышей), затем слой известняка (извести) и оставшуюся руду. Такой поря­док завалки предотвращает приваривание известняка к подине и обеспечивает образование в начале плавки железистого шлака, в котором в дальнейшем относительно легко растворяется извест­няк или известь. Во время и после завалки руду и известняк про­гревают, по крайней мере для полного удаления влаги. При этом на печах большой вместимости обычно сыпучие подвергают пере­мешиванию (шуровке).

После завалки и прогрева железной руды и известняка загружают лом, располагая мелкий лом внизу, круп­ный вверху. Твердый чугун или отходы (лом) чугуна загружают поверх лома.

При работе скрап-процессом на подину загружают легковесный лом, поверх которого загружают известняк (8-10 %). Затем заваливают ос­тальной лом. Поверх лома загружают чугун. При скрап-угольном процессе порядок завалки такой же, что и при скрап-процессе, но в слое лома располагают слой карбюратора.

Прогрев. Для обеспечения успешного плавления и уменьшения его длительности необходим прогрев шихтовых материалов, осо­бенно при скрап-рудном процессе. Продолжительность прогрева зависит от многих факторов: теплового режима работы печи, ско­рости завалки, количества загружаемых материалов (лома) и т.д. Для сокращения периода прогрева сыпучие загружают послойно и перемешивают для вскрытия непрогретой массы. Для повышения поглощения тепла шихтой во время прогрева наверх загружают более крупную металлическую шихту, имеющую большую теплопро­водность. Температура нагрева лома, по крайней мере верхних его слоев, должна быть не ниже температуры затвердевания чугуна (1250-1350°С)

В случае заливки чугуна на недостаточно прогретую шихту про­исходит его "закозление". Это приво­дит к существенному увеличению продолжительности периода плав­ления, так как одновременно ухудшается и теплопередача. Кроме того, во время неактивного состояния ванны в шлаке накапливается боль­шое количество оксидов железа, при нагреве чугуна до жидкоподвижного состояния это может привести к выбросам шлака и даже метал­ла из печи из-за интенсивного окисления углерода кислородом FeO. Перегрев шихты также недопустим, так как при заливке жидкого чугуна наблюдается бурная реакция окисления углерода, приводящая к выбросам шлака и металла из печи. После прогрева шихтовых материалов в печь заливают жидкий чугун.

Заливка жидкого чугуна осуществляется при помощи съемного или стационарного желоба. Продолжительность заливки чугуна оп­ределяется организационными возможностями и обычно составля­ет 15-30 мин. Чугун необходимо заливать медленно, иначе воз­можны бурное окисление углерода чугуна и выбросы металла и шлака из печи.

Плавление как самостоятельный период плавки начинается пос­ле заливки жидкого чугуна. Основной задачей этого периода являются расплавление металла и нагрев его выше температуры плавления (линии ликвидус) на 40-60°С, а также предварительное рафинирование металла.

Создание в период плавления оптимальных шлакового режима и баланса кислорода позволяет в этот период провести основную часть рафинирования металла, например, во многих случаях обес­печить требуемую степень дефосфорации его. Кроме фосфора, в период плавления окисляются и другие примеси углерод, кремний и марганец, а также может иметь место значительное окисление железа. Продолжительность плавления, кроме вместимости и теп­ловой мощности печи, зависит от шлакового режима периода плав­ления, количества чугуна в шихте, температуры жидкого чугуна и степень нагрева твердых шихтовых материалов, осо­бенно лома.

При работе на шихте, содержащей значительное количество жидкого чугуна (> 50%), и ведении процесса в печах большой вместимости удаление шлака из печи в период плавления являет­ся важным фактором уменьшения продолжительности плавления. В этот период должно быть удалено максимально возможное ко­личество шлака для уменьшения толщины слоя шлака в печи и улучшения теплопередачи от факела к ванне. Это вызывает сни­жение расхода известняка при хорошей дефосфорации и десульфурации металла. Уменьшение расхода известняка связано с тем, что основность шлаков, спускаемых в период плавления, мала (0,5-1,0).

Образующаяся в результате окисления углерода окись углерода вспенивает шлак и он начинает вытекать, «сбегать» из печи. Шлак, стекающий из печи во время плавления после заливки жидкого чугуна, называют «сбегающим» первичным шлаком. Состав этого шлака характери­зуется низкой основностью и высоким содержанием FeO и МnО (если в чугуне содержится больше 1 % Мп). Железистые шлаки и пониженная температура благоприятствуют дефосфорации. Фосфор в этих шлаках находится главным образом в виде (FeO)3P2O5. Средний состав первичного сбегающего шлака следующий, %: SiO2 20—35; А12О3 3—5; FeO 25—35; Fe2O3 3—5; CaO 12—20; MgO 5—9; МnО 15—35; P2O5 2—4.

Со сбегающим шлаком из печи удаляется значительное коли­чество нежелательных окислов SiO2 и Р2О5, а вместе со шлаком уходит также большое количество окислов железа и мар­ганца. Поэтому в тех случаях, когда в шихте мало серы и фосфора, сбегающий шлак стараются задержать в печи и уменьшить тем самым потери металла. Количество сбегающего шлака составляет 8—10 % от массы металла (50—70 % от всего образующегося во время плавления шлака). Спуск шлака продолжается почти до полного расплавления шихты.

Обычно продолжительность периода плавления при работе на жидком чугуне 2-3 ч. При работе на твердом чугуне период плавления продолжительнее (3-4 ч), так как для нагрева чугуна необходим дополнительный расход тепла.

За период плавления полностью окисляется кремний, почти полностью марганец и большая часть углерода (30-40%)

Состав шлака, сформировавшегося к моменту расплавления и после него, имеет обычно следующий состав: 35—45 % СаО, 20—25 % SiO2, 10—15 % FeO, 13—17 % МnО.

Доводка плавки для различных вариантов мартеновского про­цесса проводится примерно по одной схеме. Задача этого периода состоит в окончательном рафинировании металла и дополнитель­ном нагреве ванны. Доводка обычно состоит из двух стадий: поли­ровки (рудного кипения) и чистого (свободного) кипения.

Полировка - это период наводки шлака для обес­печения требуемой степени дефосфорации и десульфурации ме­талла. Для этого сначала скачивают из печи шлак, а затем приса­живают шлакообразующие материалы: известь, боксит, плавиковый шпат и т. д.

Скачивание шлака проводят следующим образом. После расплавления ванны в печь подают некоторое количество же­лезной руды или продувают ванну кислородом или сжатым возду­хом. Углерод начинает интенсивно окисляться, уровень шлака в печи несколько поднимается. В это время отключают подачу топлива, давление в печи падает и шлак вспенивается и уходит из печи в спе­циально подготовленные шлаковые чаши. На печах малой и средней емкости шлак скачивается через среднее завалочное окно, на больше­грузных печах шлак скачивается еще и через специальные отвер­стия в задней стенке печи. В тот момент, когда шлаковые чаши на­полнятся шлаком, топливо вновь подают в печь, давление в печи возрастает, шлак оседает и перестает уходить из печи.

Часто для ускоре­ния скачивания шлак сгребают с помощью гребков, помещаемых на хоботе завалочной машины. Отключать подачу топлива при этом не следует. Основность скачиваемого шлака гораздо выше, чем «сбега­ющего» во время плавления. Вместе со скачиваемым шлаком из печи уходят значительная часть оставшегося в ванне фосфора и некоторое количество серы.

Чтобы перевести оставшиеся в шлаке фосфор и серу в прочные соединения, наводят новый шлак присадками свежеобожженной извести. Основность шлака CaO/SiO2 при этом возрастает до 2,5 и более. Если такой шлак оказывается чрезмерно густым и вязким, то его разжижают присадками боксита или плавикового шпата. Окислительная атмосфера печи непрерывно питает ванну кислородом и содержащийся в металле углерод окисляется и ванна кипит. Вызываемое этим перемешивание благоприятствует передаче тепла от факела к ванне, и температура металла постепенно возрастает.

Чтобы ускорить шлакообразование, иногда одновре­менно присаживают и железную руду (агломерат, окатыши). Кис­лород твердого окислителя интенсивно окисляет углерод, что обес­печивает хорошее перемешивание ванны и ускоряет шлакообразо­вание. Успешно проводить полировку можно лишь в том случае, если металл достаточно нагрет к концу плавления, так как присад­ка железной руды и флюсов охлаждает ванну. Для нормального проведения полировки необходим перегрев металла выше темпе­ратуры плавления на 40-60°С. При указанной степени перегрева количество единовременно присаживаемых материалов не должно превышать 2-2,5%. Если по условиям дефосфорации и десульфурации необходимо приса­живать большее количество материалов, то их дают в два и не­сколько приемов, обеспечивая соответствующий нагрев ванны. При этом следует иметь в виду, что 1 % твердого окислителя охлаждает ванну на 20-25°С, извести - на 10-15°С, боксита - на 15-20°С (В конвертерных процессах, то есть без поглощения тепла от факела, охлаждающее действие выше, соответственно 35-40, 15-20, 20-25°С). При необходимости глубокой дефосфорации и десульфурации ме­талла производят одно или два дополнительных скачивания и на­водки нового шлака в период доводки.

Кроме того, для нормального проведения периода полировки необходим некоторый запас углерода, который обычно составляет 0,2-0,5% и зависит от продолжительности периода (какое количе­ство и во сколько приемов присаживаются материалы), вместимо­сти печи (чем меньше вместимость, тем больше требуется запас углерода).

Период чистого кипения необходим для окончательной подго­товки металла к выпуску: нагрев его до заданной температуры, удаление газов и неметаллических включений. В этот период угле­род окисляется практически только горячим кислородом газовой фазы печи при непрерывном поступлении тепла факела в ванну. Это создает благоприятные условия для нагрева металла. В этот период не рекомендуется присаживать в шлак флюсы и твердые окислители, за исключением случаев выплавки низкоуглеродистой стали, когда для интенсификации реакции окисления углерода разрешается присадка руды небольшими порциями.

Скорость нагрева металла в период чистого кипения обычно составляет 1-2°С/мин и зависит от вместимости и тепловой мощно­сти печи, а также состояния шлака. Шлак в этот период должен иметь нормальную жидкоподвижность. Скорость окисления углерода в этот период обычно колеблется в пределах 0,003-0,006% С/мин и зависит от вместимости печи (удельной нагрузки на подину), окислитель­ной способности газовой фазы и содержания углерода в металле При достижении концентрации углерода менее 0,10-0,15% скорость его окисления существенно снижается. Содержание марганца в период чистого кипения, когда [С]>0,1%, обычно увеличивается вследствие восстановления его из шлака ввиду повышения темпе­ратуры ванны.

Основность шлака в этот период должна быть достаточной для предупреждения восстановления фосфора и обеспечения некото­рого удаления серы. Это наблюдается при основности ~ 2,5. Но при чрезмерном повышении основности увеличивается вязкость шлака, что препятствует удалению серы из металла и нормально­му нагреву его.

Скорость удаления серы из металла тем больше, чем больше скорость окисления углерода, так как, во-первых, сера частично удаляется вместе с СО в печные газы из металла и шлака; во-вторых, чем выше скорость окисления углерода, тем лучше исполь­зование десульфурирующей способности шлака. Повышение тем­пературы ванны в этот период обеспечивает получение гомогенного шлака, увеличение скорости окисления углерода, а это улучшает не только десульфурацию металла, но и дегазацию его.

Во время чистого кипения благодаря нормальному состоянию ванны (наличию гомогенного шлака и равномерному кипению) ско­рость поступления водорода из газовой фазы снижается, а скорость удаления его в пузырях СО возрастает. В результате содержание водорода в металле снижается. По многочисленным исследованиям, содержание водорода в металле в начале чистого кипения обычно составляет 4-6 см3/100 г, в процессе чистого кипения снижается на 1-2 см3/100 г.

Продолжительность чистого кипения для дегазации металла, включая снятие его переокисленности, составляет 20-30 мин. Но этого времени часто бывает недостаточно для нагрева металла, особенно при выплавке легированной стали, требующей введения в конце плавки большого количества холодных ферросплавов, поэтому продолжительность чистого кипения обычно составляет 30-45 мин.

Задача мастера-сталевара заключается в том, чтобы к моменту, когда температура металла окажется достаточной для выпуска, ванна хорошо прокипела, очистилась бы от газов и неметаллических включений, в металле содержалось бы необходимое количество углерода и минимум серы и фосфора. При соблюдении всех этих требований период кипения заканчивают и металл раскисляют. Если раскислители вводят в ковш, то кипящий металл выпускают из печи без раскисления.

Раскисление и легирование металла могут быть проведены как в печи, так и в ковше (на желобе) во время выпуска плавки. В печь обычно присаживают тугоплавкие и труднорастворимые ферроспла­вы, например, феррохром. Для уменьшения угара раскисляющих и легирующих элементов металл предварительно раскисляют низко­процентным ферросилицием (15-20% Si).

Выпуск плавки всегда является ответственной операцией. Чтобы выпуск плавки протекал нормально, необходимо поддерживать нормальными размеры сталевыпускного отверстия и хорошо его заделывать. Продолжительность выпуска плавки из мартеновских печей обычно колеблется в пределах 10-20 мин и в основном зависит от вместимости печи (чем меньше вместимость печи, тем меньше продолжительность выпуска). По ходу выпуска в ковш присаживают раскислители и легирующие, в современной практике эту операцию стараются перенести полностью из печи в ковш.

Общая длительность плавки в мартеновских печах колеблется в пределах от 5-6 до 10-15 ч и зависит от многих факторов вместимости печи, вида применяемого чугуна (жидкий или твер­дый), его доли в шихте, системы отопления, степени интенсифи­кации сжигания топлива и окисления примесей, степени механиза­ции работ по обслуживанию печи и т. д. Увеличение вместимости печи, при постоянстве других условий, приводит к возрастанию длительности плавки.

Плавки на жидком чугуне имеют меньшую продолжительность чем на твердом, поскольку при использовании жидкого чугуна уменьшается длительность периодов загрузки шихты и плавления. С увеличением доли чугуна в шихте также уменьшается продолжи­тельность периодов загрузки и плавления.

Применение топлива с высокой теплотой сгорания (мазута природного газа) и интенсификация его сжигания кислородом обес­печивает уменьшение продолжительности плавки до 20-25% по сравнению с использованием для отопления печи смеси доменно­го и коксового газов Наибольшее уменьшение продолжительности плавки и повышение производительности мартеновских печей без увеличения их вместимости обеспечивает использование кислород­ного дутья для прямого окисления примесей металла.

При конструировании мартеновских печей стре­мятся максимально увеличить тепловоспринимающую площадь (пло­щадь подины), следовательно, уменьшить толщину слоя металла (глубину ванны, которая для крупных печей не превышает 1,5-2,0 м). К тому же мартеновские печи обязательно должны иметь рабочие окна, расположенные непосредственно над ванной. В этих условиях продувка ванны кислородом возможна с ограниченной интенсивнос­тью, максимально до 10-20 м3/(тч), тогда как в конвертерах она достигает 5-6 м3/(т мин) и более. Поэтому при одинаковой вместимости мар­теновские печи имеют годовую производительность пример­но в 10 раз меньшую. Низкая производительность является основным недостатком мартеновских печей. Кроме того, ремонт мартеновских печей требует больших материальных и трудовых затрат. Глав­ное их достоинство - возможность ведения процесса при любом расходе чугуна в шихту. Другим преимуще­ством мартеновских печей является использование первичной энер­гии (тепла газообразного и жидкого топлив).



Тепловая работа и отопление мартеновских печей


В течение всех периодов плавки в печь подают топливо. Под дей­ствием тепла факела нагреваются кладка печи и шихта. Около 85— 90 % тепла от факела к ванне передается излучением и 5—15 % — конвекцией.

В соответствии с формулой Стефана — Больцмана, количество тепла Q, переданного холодной шихте излучением, составляет:

Q = δεп [(Тгор/100)4 - (Тхол/100)4],

где δ — коэффициент, учитывающий оптические свойства кладки и форму рабочего пространства;

εп — степень черноты пламени;

Тгор и Тхол — температуры факела (горячего) и шихты (холодной), К.

Таким образом, чем выше температура факела и степень черноты пламени, тем интенсивнее нагревается шихта и тем меньше времени затрачивается на плавку. Повышения температуры факела дости­гают улучшением степени нагрева воздуха и газа в регенераторах и обогащением воздуха кислородом; повышения степени черноты факела — карбюрацией пламени.

Двухатомные газы (О2, N2, Н2) практически лучепрозрачны для волн всех длин, трехатомные (СО2, Н2О, SO2) обладают некоторой излучательной способностью, однако степень черноты пламени горя­чего чистого газа составляет всего 0,1—0,2. Чтобы повысить степень черноты пламени, необходимо обеспечить в нем содержание твердых «черных» частичек (в первую очередь углеродистых).

Углеродистые частицы могут появиться в пламени в результате разложения углеводородов: СхНу = хCTB + уНгаз, а также при добавке к подаваемому в печь газу различных жидких или твердых топлив, богатых углеродом и сложными углеводородами (мазут, каменноугольный пек). Практически степень черноты пламени εп не должна быть ниже 0,5; в большинстве случаев она составляет 0,55—0,75.

При одной и той же характеристике факела разность [(Тгор/100)4 - (Тхол/100)4] тем выше, чем холоднее шихта. Наиболее низкая тем­пература шихты наблюдается во время завалки и в начале периода плавления. Степень черноты холодной твердой шихты близка к еди­нице (0,92—0,95). Поэтому в этот период передача тепла от факела к шихте максимальна, она настолько велика, что практически нет опасности оплавить огнеупоры, и в печь подают максимальное количество топлива.

По мере нагрева шихты температура ее Тхол возрастает, шихта раскаляется, покрывается шлаком и сама начинает отражать тепло­вые лучи, в результате чего условия поглощения тепла шихтой ухудшаются. Во избежание нагрева и оплавления огнеупора необ­ходимо уменьшать подачу топлива.

Таким образом, подача топлива по ходу плавки меняется. Макси­мальной величины расход топлива достигает во время завалки и в начале периода плавления. Подаваемое в это время количество тепла называют максимальной нагрузкой. По мере прогрева шихты подачу топлива уменьшают и тепловая нагрузка падает. Тепловая работа мартеновской печи характеризуется средней тепловой нагрузкой или тепловой мощ­ностью печи, которая представляет собой частное от деления общего расхода тепла на время плавки:

Расход тепла, кДж /Прод. плавки, ч = Тепловая мощность, кДж/ч

Средняя тепловая нагрузка в зависимости от тоннажа печи возрастает от 23,2 для 125-т печи до 69,9 МВт (252 кДж/ч) для 900-т печи. Максимальная тепловая нагрузка на 20 — 40 % выше средней.

Для характеристики топлива и условий его сжигания применяют коэффициент использования топлива (к. и. т.):

clip_image020

где QТ — теплота сгорания топлива; QПС — тепло уходящих газов.

Для мартеновских печей К.И.Т. составляет 0,50 — 0,55.

Удельный расход тепла (расход тепла топлива на 1 т стали) зависит от многих факторов и прежде всего от емкости печи. По мере увеличения садки печи уменьшаются относительные потери тепла на нагрев футеровки, на отвод тепла с охлаждающей водой и другие потери, в результате удельный расход тепла снижается с 840 для 10 –20т печей до 210 МДж/т для 900-т печей.

Топливо мартеновских печей

В России наиболее распространены в качестве топлива для мартеновских печей природный газ и мазут.

Мазут — наилучшее топливо для мартеновских печей, он дает яркосветящийся настильный высокотемпературный факел (калориметрическая температура горения мазута 2650 °С). Обычно мазут содержит 83-85 % С и 10—11 % Н2, остальное — влага, зола и сера. Содержание серы в мартеновских мазутах колеблется в пределах 0,5—0,7 %. Сернистые мазуты (3 % S и более) в мартеновском производстве применяют редко, так как сера из топлива переходит в металл и ухудшает его качество.

Перед подачей к форсункам мазут нагревают до 70—80 °С. Рас­пыление мазута осуществляют сжатым воздухом, подаваемым под избыточным давлением 0,5—0,7 МПа или перегретым до 300—350 °С паром под избыточным давлением 1,1—1,2 МПа.

Природные газы основных месторождений России примерно на 95 % состоят из метана СН4. Факел природного газа малосветя­щийся и для повышения его светимости одновременно с газом в печь вводят некоторое количество (до 30—40 %) мазута. Добавка мазута не только повышает светимость факела, но и утяжеляет его, делает факел более настильным

Повышать светимость факела пламени природного газа можно также конвертированием, нагревая часть его при недостатке воздуха. Метан при нагревании разлагается («реформируется») с выделением большого количества сажистых частиц (СН4 = С + 2Н2), что обес­печивает получение светящегося факела

Природный газ является «удобным» топливом: он не содержит ядовитых веществ и вредных примесей, дешев, легко транспорти­руется Ряд мартеновских печей оборудован газо-кислородными горелками, при помощи которых газ вводят в печь через свод, и вы­сокотемпературный факел природного газа, горящего в кислороде, направляют непосредственно на шихту. Скорость плавления шихты при этом значительно возрастает.

Калориметрическая температура горения холодных мазута и при­родного газа в нагретом воздухе составляет 2600—2650 °С, а фактическая ×0,7 = 1820-1850 °С. Таким образом, такие высококалорийные виды топлива, как мазут и при­родный газ, дают высокотемпературный факел без подогрева топлива (но с подогревом воздуха)


Шлакообразование и шлаковый режим мартеновской плавки


Для мартеновского процесса шлаковый режим имеет исключи­тельно важное значение, так как в мартеновской печи нагрев ме­талла происходит через слой шлака, т е шлак в мартеновской плавке участвует не только в рафинировании металла, но и в его нагреве.

Основные источники образования шлака следующие: продукты окисления примесей чугуна и скрапа (SiО2, MnO, Р2О5, Сг2О3 и др); продукты разъедания футеровки агрегата (MgO и СаО в основ­ных печах и SiO2 в кислых); загрязнения, внесенные шихтой (песок, глина и др.), т. е. SiО2, A12O3; миксерный шлак; ржавчина, покрывающая скрап, т. е. Fe3O4, Fe2O3, FeO; добавочные материалы (известняк, известь, железная руда, агломерат, марганцевая руда и др.) — СаО, Fe2O3, MnO, SiO2, A12O3 и др.

Шлакообразование в мартеновской плавке начинается еще в период прогрева лома и получает большое развитие в начале плавления после заливки чугуна Первичный шлак, образующийся в период прогрева, состоит главным образом из оксидов железа и относительно меньшего количества оксидов марганца, кремния и кальция. По ходу плавления состав шлака непрерывно изменяется вследствие окисления примесей чугуна, всплывания из нижних слоев ванны ранее заваленных сыпучих материалов и удаления образовавшегося пенистого шлака.

Характер изменения содержания основных компонентов шлака по ходу плавки в мартеновском процессе примерно такой же, что в кислородно-конвертерном.

Особенности мартеновского процесса при высоком содержании чугуна в шихте

На первой стадии развития мартеновского процесса, когда печи имели малую вместимость (до 5-10 т), малую удельную нагрузку на подину (- 1 т/м2) и плавка в них длилась > 12 ч, кислорода, поступающего из газовой фазы печи, было достаточно для окисли­тельного рафинирования металла даже при высоком содержании чугуна в шихте. По мере увеличения вместимости печей и улучше­ния их тепловой работы, кислорода, поступающего из газовой фазы через слой шлака в металл стало недостаточно, поэтому рафинирование, особенно окисление углеро­да, отставало от нагрева металла. Для устранения этого недостат­ка еще в 80-х годах XIX в. в качестве дополнительного источника кислорода начали применять железную руду. Этот вариант процесса получил название скрап-руд­ного.

Применение кислорода для интенсивной продувки мартеновс­кой ванны кислородом, получившее распространение в 60-х годах XX в., позволило исключить твердые окислители из шихты или ограничиться малым расходом их. Так появился новый вариант мартеновского процесса, который называется скрап-кислородным процессом.

В настоящее время при переде­ле шихт с высоким расходом жидкого чугуна используется процесс, занимающий промежуточное положение между скрап-рудным и скрап-кислородным: недостаток кислорода частично компенсирует­ся кислородом твердых окислителей, даваемых в завалку, и час­тично кислородом дутья.

 

Скрап-рудный процесс без продувки ванны кислородом

Варианты мартеновской плав­ки различаются в первую очередь способом достижения заданного содержания углерода в металле к моменту расплавления ванны, от которого зависят нормальное проведение периода доводки и выпуск металла заданного состава. При скрап-рудном процессе эта задача решается введением в период завалки определенного (оптимального для данных условий) количества твердого окислителя. В этом состо­ит основная особенность скрап-рудного процесса.

Расход твердого окислителя в период завалки определяется из баланса кислорода, в приходные статьи которого входят кислород поступающий из атмосферы печи, из окалины лома, из СО2 известняка; в расходные: кислород, расходуемый на окисление углерода и примесей чугуна, а также на образование оксидов железа шлака. Формула для расчета расхода руды, полученная из уравнения балан­са кислорода, может быть представлена в виде:

clip_image022

Каждая из этих статей зависит от большого числа факторов, поэтому развернутая формула получается сложной и ею в производственных условиях можно пользоваться лишь в том случае, если расчеты выполняют при помощи ЭВМ.

Обычно расход твердого окислителя (руды, агломера­та, окатышей) в период завалки колеблется в пределах 5-15%, при высокой доле (>70%) чугуна в шихте, достигая >20%.

Основными факторами, существенно влияющими на расход твердых окислителей в период завалки, являются следующие:

1. Доля чугуна в шихте и его химический состав. Чем выше количество чугуна в шихте и окисляющихся примесей в нем, тем больше расход кислорода на окисление примесей металла и на образование оксидов железа шлака, меньше поступление в ванну кислорода из газовой фазы печи и в виде окалины лома. При постоянстве других условий с уве­личением расхода чугуна в шихту и содержания окисляющихся примесей в нем расход руды в период завалки увеличивается.

2. Вместимость или удельная нагрузка на подину печи, от ко­торой зависит поступление кислорода из газовой фазы печи.

С увеличением удельной нагруз­ки на подину поступление кислорода из атмосферы печи уменьша­ется. Удельная нагрузка на подину возрастает при повышении вме­стимости печи. Следовательно, с увеличением вместимости печи при повышении удельной нагрузки на подину расход руды в пери­од завалки возрастает. Но при увеличении удельной нагрузки на подину, если другие условия остаются постоянными, продолжитель­ность периода плавления возрастает. Это вызывает повышение поступления кислорода из газовой фазы печи, т. е. уменьшение расхода руды в период завалки. Однако в целом с увеличением вместимости печи при постоянстве других условий расход руды в период завалки, как правило, возрастает.

3. Тепловая работа печи влияет на расход руды в завалку, изменяя поступление кислорода из атмосферы печи. Чем лучше теп­ловая работа печи, особенно при интенсификации сжигания топ­лива кислородом, тем выше удельное поступление кислорода из газовой фазы печи и меньше продолжительность плавления, т. е. с одной сто­роны происходит увеличение поступления кислорода (уменьшение расхода руды в период завалки), а с другой - уменьшение длительности периода плавления вызывает обратный эффект (увеличение расхода руды). Однако улучшение тепловой работы печи обычно вызы­вает уменьшение расхода руды в период завалки, т. е. наблю­дается более существенное увеличение удельного поступления кислорода из газовой фазы печи, чем уменьшение продолжитель­ности плавления.

4. Содержание углерода в металле по расплавлении. Чем больше оно, тем меньше расход кислорода на окисление углерода и расход руды в период завалки

Кроме указанных основных факторов, на расход твердых окис­лителей в период завалки влияют режим спуска шлака в период плавления и качество лома. Чем обильнее и раньше спускают шлак, тем больше расход кислорода на образование оксидов железа шлака и расход руды в период завалки. Чем мельче и окисленнее лом, тем больше количество кислорода поступает с окалиной и меньше расход руды в период завалки.


Скрап-кислородный процесс


Скрап-кислородный процесс отличается от скрап-рудного лишь тем, что в периоды плавления и доводки кислород твердых окислителей заменяется кислородом дутья. Эта замена при полном ее использовании позволяет увеличить произ­водительность мартеновских печей в 1,5-2 раза. Преимуще­ства скрап-кислородного варианта мартеновского процесса: во-первых, вдувание газообразного кислорода в ванну позволяет повысить в несколько раз скорость окислительного рафини­рования металла; во-вторых, замена кислорода твердых окислите­лей, на разложение которых расходуется большое количество тепла, газообразным кислородом улучшает тепловой баланс плавки и при­водит к снижению расхода топлива. Однако при вдувании кислоро­да в ванну обычно наблюдается некоторое снижение стойкости печи (увеличение расходов на огнеупоры и ремонтные работы) и неиз­бежно уменьшение выхода годной стали (вследствие почти полно­го исключения из шихты твердых окислителей и увеличения угара железа). Однако эти потери обычно меньше того выигрыша, кото­рый достигается при уменьшении продолжительности плавки (по­вышения производительности печи) и снижении расхода топлива.

Кроме того, при скрап-кислородном процессе гораздо проще управление реакцией окисления углерода, в частности легче дос­тижение заданного содержания углерода в металле по расплавле­нии. Это объясняется тем, что расход вдуваемого в ванну кисло­рода, определяющий остаточное содержание углерода в металле, можно легко изменить (увеличить или уменьшить) по ходу процес­са, например, взяв пробу металла и определив в нем содержание углерода до расплавления ванны. Такая корректировка невозмож­на при скрап-рудном процессе, так как все расчетное количество твердого окислителя присаживается в ванну в начале процесса - в период завалки сыпучих материалов.

Таким образом, скрап-кислородный процесс является не только самым высокопроизводительным способом мартеновского пере­дела шихт с высоким содержанием чугуна, но и наиболее легко управляемым процессом.

Продувка ванны кислородом, являющаяся основной отличитель­ной особенностью технологии скрап-кислородного мартеновского процесса, обычно начинается с момента заливки чугуна и ведется до начала чистого кипения, т. е. в течение главных по продолжи­тельности и значению технологических периодов (операций). Ос­новными параметрами продувочного периода плавки являются удельный расход дутья (Wд, м3/т), удельная интенсивность продув­ки [iо23/(т-ч)] и продолжительность продувки (τп , ч). Они между собой связаны:

clip_image024

Удельный расход кислорода определяется расче­том по балансу кислорода, учитывающего коэффициент усвоения кислорода (обычно составляет 0,7-0,9, но может быть > 1, если во время продувки ванны имеет место интенсивное поглощение кислорода из атмосферы печи).

Удельный расход кислорода, вду­ваемого в ванну в период плавления в ос­новном зависит от доли чугуна в шихте, его химического состава и содержания углерода в металле по расплавлении. Кроме того, если плавку ведут с введением в период завалки твердого окислителя, расход кислорода зависит также от расхода последнего.

Обычно при скрап-кислородном процессе расход кислорода на продувку ванны в период плавления колеблется в пределах 15-25 м3/т, в период доводки 5-10 м3/т.

Удельная интенсивность продувки. Она обычно изменяется в пределах 5-20 м3/(т ч) в зависимости от конкретных условий работы цеха (печи). Практика пока­зывает, что продувка с удельной интенсивностью < 5 м3/(т-ч) не оправдывает затраты на кислород и его подачу в ванну, сооруже­ние газоочистки и т. п. При 20 м3/(т-ч) производительность мартеновских печей можно увеличить в два раза и более.

Однако полное использование этих возможностей интенсифика­ции мартеновского процесса ограничено возмож­ностями по кислороду и шихтоподаче. Кроме того, чем выше удельная интенсивность продувки, тем больше должна быть доля жидкого чугуна в шихте. Это объясняется тем, что скорость обезуглероживания увеличивается в большей степени, чем ско­рость нагрева металла, поэтому относительное изменение темпе­ратуры ванны уменьшится, т. е. на нагрев ванны на одну и ту же величину требуется больше углерода. Поскольку углерод в ванну вносится чугуном, то его расход должен быть увеличен.

В связи с этим скрап-кислородным процессом работает только часть мартеновских печей, обычно имея удельную интенсивность продувки 6-8, редко 10 м3/(т ч). При этом производительность печей увеличивается на 25-35%, ред­ко выше, а удельный расход кислорода для продувки составляет 15-25 м3/т.

Синхронизация процессов обезуглероживания и нагрева метал­ла в скрап-кислородном мартеновском процессе обеспечивает­ся гораздо легче, чем в конвертерных процессах благодаря тому, что, во-первых, проще контролировать текущие значения содержания уг­лерода и температуры, во-вторых, имеется регулируемый подвод тепла извне.


Показатели и перспективы мартеновского производства стали


Плавка стали в мартеновских печах отличается от обычной конвертерной необходимостью подвода тепла извне и более высо­ким расходом лома в шихту, что обуславливает меньшую общую энергоемкость. Для оценки ресурсоемкости мартеновского процесса рассмотрим материальный и тепловой балансы скрап-рудного и скрап-процесса при выплавке углероди­стой стали.

Материальный баланс мартеновского процесса отличается от конвертерного не только меньшим расходом чугуна, но и металлошихтыв целом. Например, мартеновский скрап-процесс может быть нормально проведен при расходе чугуна 300 кг/т, тогда как для обычной конвертерной плавки требуется не менее 800 кг/т. Общий расход металлошихты в мартеновском процессе обычно 1125-1135 кг/т стали, тогда как в конвертерном процессе на 10-15 кг/т боль­ше.

Тепловой баланс. В мартеновском процессе его составление имеет важное значение прежде всего для определения недостатка тепла на процесс и необходимого расхода топлива. Удельный дефицит тепла в мартеновских процессах может изменяться в очень широких пределах: 600-1500 МДж/т. Обычно ко­эффициент использования топлива (к.и.т.) составляет 22-27%, по­этому расход условного топлива колеблется в пределах 80-140 кг/т для скрап-рудного и 160-220 кг/т для скрап-процесса. Минимальный расход топлива наблюдается при высоком расходе жидкого чугуна и продувке ванны кислородом (кислородный мартеновский процесс), максимальныйпри самом низком расходе твердого чу­гуна в скрап-процессе. Однако общая энергоемкость скрап-процесса с учетом прошлых затрат значительно меньше, чем скрап-рудного.

Удельный расход топлива в мартеновском процессе, кроме расхода чугуна и его физического состояния, зависит от вместимо­сти печи и продолжительности плавки. Чем больше вместимость печи, тем меньше удельный расход топлива. При прочих равных условиях, чем меньше продолжительность плавки, тем меньше расход топлива.

Мартеновский процесс сыграл огромную роль в производстве стали в XIX-XX веках. Однако в современных условиях у него можно отметить ряд недостатков. Во-первых, низкая производительность, во-вторых, большие трудности в синхронизации плавки стали в мартеновской печи и разливки стали на МНЛЗ, в-третьих, большой расход огнеупорных материалов и доля ручного труда при ремонтах печей, в-четвертых, более тяжелые условия труда.

По этим причинам мартеновский процесс неуклонно вытесняют кислородно-конвертерный и электросталеплавильный. В значитель­ных объемах мартеновское производство сохранилось лишь в Китае, России и Украине, что объясняется недостатком финансовых средств при модернизации сталеплавильного производства.


Сущность работы двухванных сталеплавильных агрегатов


Практика интенсивной продувки мартеновской ванны кислородом показала, что не достигается теоретически ожидаемое улучшение теплового баланса и уменьшение расхода топлива. Основная причи­на этого несоответствия заключается в неудовлетворительном исполь­зовании тепла реакции окисления СО, выделяющегося из ванны. При нормальном ходе обычного мартеновского процесса СО полностью окисляется до СО2 над ванной, тепло этой реакции используется для нагрева ванны, причем лучше, чем тепло топлива. При интенсивной продувке мартеновской ванны кислородом выделяется такое боль­шое количество СО, которое полностью окислить до СО2 в рабочем пространстве не удается, и использование тепла этой реакции для нагрева ванны снижается, ухудшая тепловой баланс плавки.

Отрицательным последствием неполного окисления СО до СО2 в рабочем пространстве также является неизбежный перегрев нижнего строения печи, в первую очередь насадок регенераторов, и быстрый выход их из строя.

Вследствие указанных недостатков мартеновской печи необходи­мо было создать новый сталеплавильный агрегат, в котором процесс можно было проводить с более интенсивной продувкой, чем в мар­теновских печах, максимально используя при этом тепло дожигания СО до СО2. По своим габаритам агрегат должен быть таким, чтобы его можно было поставить вместо мартеновских печей. Этим требо­ваниям соответствует двухванная печь (см. рисунок 10). Рабочее пространство имеет две ванны, каждая из которых снабжена тремя фурмами для подачи кислорода и шестью газо-кислородными горелками, расположенными в своде и предназначенными для ото­пления печи.

clip_image026

1 - кислородные фурмы, 2 - сводовые газо-кислородные горелки

Рисунок 10 – Схема устройства рабочего пространства двухванной печи

В каждой ванне плавка ведется со смещением примерно на половину продолжительности, т. е. конец плавки в одной ванне соответствует середине плавки в другой. В первой ванне, в кото­рой процесс закончен, осуществляются выпуск плавки, заправка ванны, завалка твердых шихтовых материалов и их прогрев глав­ным образом теплом реакции окисления выделяющегося из второй ванны СО до СО2 и частично теплом топлива, подаваемого через сводовые горелки. В это время во второй ванне производится продувка металла кислородом. Образующийся при этом СО час­тично окисляется до СО2 над второй ванной, но главным образом при переходе в первую ванну. Использование тепла этой реакции оказывается эффективным, так как, во-первых, происходит полное окисление СО до СО2, во-вторых, тепло воспринимают холодные твердые материалы.

Благодаря этому, хотя процесс в двухванных печах имеет во много раз большую продолжительность (3—4 ч), чем в кис­лородных конвертерах (15- 20 мин), в двухванных печах возможна переработка большего количества лома, чем в конвертерах. Так, плавку в двухванных печах можно вести с использованием до 35% лома, расходуя при этом топлива всего 10-15 кг/т, причем в основном на поддержание печи в рабочем состоянии во время ее заправки.

Изменение направления движения газов (перекидка) произво­дится один раз в середине плавки. Газы уходят из печи со стороны ванны, где идет первая половина плавки, которую часто называют холодным периодом.

Основной особенностью работы двухванной печи является высокоэффективное использование тепла окисления до СО2 оксида углерода СО, выделяющегося при интен­сивной продувке металла кислородом.

Внешне двухванная печь мало отличается от мартеновс­кой. Первая половина плавки (заправка печи, завалка и прогрев шихты, заливка чугуна) проводится, как в мартеновском процессе, но только за более короткое время. В течение первой половины плавки происходит интен­сивный нагрев твердой шихты теплом, подводимым извне: теплом окисления СО до СО2, образующегося в соседней ванне, и теплом топлива, т. е. ванна в течение первой половины плавки отапливается, что и дает основание агрегат называть печью, а не конвертером.

Вторая половина плавки — окислительное рафинирование, проводится, как в кислородном конвертере, но с меньшей интенсивностью продувки. Удельная интенсивность про­дувки в двухванных печах обычно составляет 0,4-0,6 м3/(т-мин) или 25-35 м3/(тч). Она в первую очередь ограничивается пропускной способностью дымового тракта печи, а также продолжительностью первой половины плавки (синхронность работы двух ванн). При увеличении пропускной способности дымового тракта и сокращении продолжительности первых опера­ций (заправки и завалки) возможно повышение интенсивности продувки до >1 м3/(т-мин).


Технология плавки в двухванных сталеплавильных агрегатах


Процесс в двухванных печах по суще­ству является определенным сочетанием отдельных элементов тех­нологии плавки стали в мартеновских печах и кислородных конвер­терах. Однако этот процесс отличается от мартеновского и конвер­терного тем, что для нормальной работы агрегата необходима постоянная синхронность работы обеих ванн, требуется стро­гое соблюдение графика проведения операций в каждой ванне. Примерный график совмещения основных операций и их продолжительности приведен на рисунке 11.

clip_image028

Рисунок 11 – График совмещения операций при плавке стали в двухванных печа и примерная их продолжительность (% от общей длительности плавки)

На двухванных печах (садка каждой ванны 250-300 т) общая продолжительность цикла в одной ванне 3-4 ч, т. е. плавки выпускаются из печи с промежутками в 1,5-2 ч.

Заправка печи проводится для восстановления изношенных за время плавки участков наварки ванны, передней, задней и разде­лительной стенок. Поскольку ванна двухванных печей более глубокая, углы наклона стенок и откосов больше, чем у мартеновских печей, то ее износ более интенсивный. В связи с этим продолжи­тельность заправки двухванных печей несколько больше продол­жительности заправки мартеновских печей.

Завалка шихтовых материалов. Твердую часть шихтовых материалов обычно составляют лом и флюсы (главным образом известь). Чаще все количество флюсов, расходуемых на плавку, вводят во время завалки, так как присадка части по ходу плавки (после расплавления ванны) требует прекращения продувки и удлиняет этот период. Твердые окислители не применяют или применяют в ограниченном количестве, чтобы уменьшить эндотер­мический процесс окисления углерода кислородом оксидов желе­за. Этим достигается повышение расхода лома в шихту.

Прогрев шихты (лома) в двухванных печах осуществляется преимущественно теплом реакции окисления СО до СО2. Прогрев лома тем лучше, чем больше продолжительность этого периода, поэтому если предыдущий период - завалка затя­гивается, то на нагрев остается меньше времени. Температура нагрева лома, по крайней мере верхних его слоев, должна быть не ниже темпера­туры затвердевания чугуна (1100-1150°С). При заливке чугуна на недостаточно прогретую шихту происходит "закозление" его, и период продувки начинается ненормально: вдуваемый кислород плохо усваивается ванной, реакции окисления примесей, в том числе и углерода, протекают медленно; преимущественно окисля­ется железо, и в шлаке накапливается большое количество окси­дов железа. Это приводит, во-первых, к удлинению второй поло­вины плавки и снижению производительности печи; во-вторых, может вызвать выброс шлака и металла из печи вследствие воз­можного скачкообразного роста скорости окисления углерода кис­лородом оксидов железа, накопленным в шлаке в начале продув­ки, когда металл и шлак нагреты и приобретают нормальную жидкоподвижность. Перегрев лома также недопустим, так как при пе­регреве в ванне накапливается большое количество жидких окси­дов железа. При заливке чугуна эти оксиды железа вызывают бурное окисление углерода чугуна, что тоже может привести к выбросу металла и шлака из печи. Вследствие кратковременности (0,5-0,7 ч) и непослойного прогрева среднемассовая температура шихты обычно составляет 700-800°С, что ограничивает расход лома.

Заливка чугуна в двухванных печах является периодом, соот­ветствующим середине плавки. Продолжительность периода заливки чугуна определяется орга­низационными возможностями. Обычно чугун к двухванным печам подают в двух ковшах, поэтому продолжительность его заливки значительно больше, чем в конвертерных цехах, и обычно дости­гает >25 мин. Кроме того, в конвертер чугун заливают на холодный лом, и нет опасности бурного окисления углерода, поэтому допу­стима высокая скорость заливки. В двухванных печах лом в ванне перед заливкой чугуна прогрет и имеется определенное количе­ство жидких оксидов железа, поэтому заливку чугуна необходимо производить осторожно с малой скоростью.

Продувка ванны кислородом, основная технологическая опера­ция плавки, начинается с момента заливки чугуна и, как правило, ведется без остановки до достижения заданного содержания угле­рода. Режим продувки характеризуется интенсивностью подачи кислорода и положением фурм.

Удельная интенсивность подачи дутья в двухванных печах обычно колеблет­ся в пределах 0,4-0,6 м3/(т мин), но может достигать > 1 м3/(т мин). По ходу плавки, как правило, интенсивность подачи дутья не из­меняют. При нормальной продувке фурмы опускают в шлак, ста­раясь держать их концы на границе шлак-металл, в этом случае улучшается усвоение кислорода, уменьшается разбрызгивание шлака и металла, нет опасности прогара фурмы. Однако в отдель­ные моменты плавки одну или две фурмы поднимают выше уровня шлака и осуществляют поверхностную продувку. Это делается при недостаточном нагреве металла для окисления СО до СО2 над ванной и усиления нагрева ее теплом этой реакции. Кроме того, поверхностная продувка используется для ускорения шлакообра­зования, так как при этом, во-первых, улучшается нагрев и, во-вторых, повышается содержание оксидов железа в шлаке, что ускоряет растворение извести в нем, и теплота образования окси­дов железа улучшает нагрев ванны.

В двухванных печах продувку металла можно вести не техни­ческим (чистота 99,5%), а технологическим (чистота 95%) кислоро­дом. Это объясняется, во-первых, тем, что в зоне реакции темпе­ратура несколько ниже, чем в конвертерах вследствие меньшего поступления кислорода через одну фурму; во-вторых в двухванных печах ввиду относи­тельно большой площади ванны получает значительное развитие удаление азота из металла в пузырях СО, выделяющихся из ван­ны вне зоны вдувания кислорода.

Шлаковый режим. Сход­ство шлакового режима процессов в двухванных и мартеновских печах в первую очередь заключается в возможности спуска пер­вичного шлака по мере его образования. Это позволяет при необ­ходимости обеспечить высокую степень дефосфорации металла при меньшем расходе флюсов. Кроме того, спуск первичного шлака улучшает десульфурацию, так как, во-первых, первичный шлак обладает определенной серопоглотательной способностью и уно­сит серу; во-вторых, удаление значительного количества SiO2 с первичным шлаком позволяет получить конечный шлак с меньшим содержанием SiO2, обладающий повышенной серопоглотительной способностью. Основное различие в шлаковом режиме состоит в том, что в двухванных печах нет необходимости в спуске первич­ного шлака для улучшения нагрева ванны, так как во время про­дувки ванна нагревается в основном теплом экзотермических ре­акций окисления компонентов металла, а не теплом факела, как в мартеновских печах.

Шлаковый режим двухванной печи имеет некоторые недостат­ки. Во-первых, в шлаке двухванных печей содержание МgО всегда выше, чем в конвертерном шлаке, и составляет >10% (большая продолжительность плавки и более реакционный шлак), в связи с чем фосфоро- и серопоглотительная способность ниже. Во-вторых, шлак в двухванных печах в основном нагревается от металла, поэтому повышение его основности выше 3-3,5 невозможно. При более высокой основно­сти шлак получается гетерогенным, физически и особенно хими­чески малоактивным. По содержанию основных компонентов (CaO, SiO2, FeO) формирование шлака в двухванных печах подчиняется закономерностям, характерным для кислородно-конвертерного процесса.

Режим окисления углерода в основном определяется дутьевым режимом. В течение первых 2/3 продувки об остаточном содержа­нии углерода в металле судят по расходу кислорода. По достиже­нии расчетного остаточного содержания углерода (1,0-1,5%) отби­рают пробу металла и измеряют его температуру. При нормальном ходе плавки к этому моменту лом успевает полностью растворить­ся, и весь металл находится в жидком состоянии. Рафинирование металла в основном сводится к окислению избыточного количества углерода, причем эта реакция практически до конца плавки оста­ется единственным источником тепла для нагрева ванны.

После расплавления ванны должна быть обеспечена синхронность проведения процессов окисления углерода и нагрева ванны. Это является важнейшей задачей, решаемой во время продувки. Ее решение упрощается, если возникает перегрев ванны, так как перегрев легко снимается присадкой твердого окислителя. Если обнаруживается недогрев, то необходимо обеспечить большее дожигание СО над продуваемой ванной. Для этого одну или две фурмы поднимают, располагая конец над ванной и расходуя часть кислорода на окисление СО. При этом также происходит некоторое окисление железа, так как, когда фурмы находятся над шлаком, содержание оксидов железа в нем повышается.

Указанным методом можно устранить небольшие недогревы. Если недогрев большой, то необходимо перейти к выплавке стали с возможно низким содержанием углерода, или доливать чугун.

При достижении заданных значений со­держания углерода в металле и температуры его нагрева продувку прекращают.

Окисленность металла в двухванных печах не отличается от окисленности его в кислородных конвертерах, если конечный шлак нормальный, гомогенный и не переокислен. По содержанию азота при использова­нии технологического кислорода металл двухванных печей не от­личается от конвертерного и мартеновского, а по содержанию водорода лучше мартеновского, поэтому при нормальном дутье­вом и шлаковом режимах плавки сталь, полученная в двухванных печах, обычно не уступает мартеновской и кислородно-конвертер­ной.

Выпуск плавки может быть сразу после прекращения продувки или через некоторое время после 5-10 мин выдержки для снятия избыточного содержания оксидов железа в шлаке. Как показали исследования на ММК и других заводах, для снятия переокисленности шлака достаточно выдержки ~ 10 мин. Поскольку продолжи­тельность выпуска плавки составляет - 10 мин, то выпуск плавки, сразу после окончания продувки нельзя рассматривать как оши­бочный технологический прием.

Раскисление и легирование металла, как при кислородно-кон­вертерном процессе, проводят исключительно в ковше.


Перспективы применения двухванных печей

Двухванная печь имеет существенные преимущества перед мартеновской печью: двухванная печь лучше приспособлена для продувки кислородом, в связи с чем возможно достижение высокой производительности при меньшем расходе топлива. Так, двухван­ные печи с вместимостью одной ванны 250-300 т имеют годовую производительность 1,0-1,5 млн. т и расход топлива 10-20 кг/т. На мартеновских печах, работающих в тех же цехах и имеющих садку 500-600 т, производство в два и более раз меньше, расход топли­ва выше в пять раз и более. Простота конструкции (отсутствие регенераторов) двухванных печей уменьшает объем ремонтных работ (причем самых тяжелых) и снижает расход огнеупоров. Расход кислорода на двухванных печах выше, чем на мартеновских, и обычно составляет 70-80 м3/т. Однако благодаря меньшему расхо­ду топлива и огнеупоров, меньшему объему ремонтных работ себестоимость стали, выплавленной в двухванных печах, обычно несколько ниже себестоимости мартеновской стали.

По производительности двухванные печи уступают кислород­ным конвертерам. Но установка кислородных конвертеров в мар­теновских цехах существенно повышает стоимость реконструкции, усложняет эксплуатацию. Поэтому в 70-е годы в СССР и за рубежом на ряде заводов часть мартеновских печей заменили двухванными.

Однако, как показала практика, двухванные печи по сравнению с мартеновскими хотя и имеют явное преимущество по производительности, но по возможности перера­ботки лома они уступают мартеновским печам. По этому показате­лю двухванные печи стоят ближе к кислородным конвертерам, т.е требуют высокого расхода чугуна, вводимого в шихту. Кроме того, качество выплавляемой стали и условия труда у двухванных печей хуже, чем у мартеновских печей и конвертеров. К 2000 году при­мерно половина двухванных агрегатов была остановлена в связи с развитием кислородно-конвертерного производства.