Машиностроение и механика

  • Increase font size
  • Default font size
  • Decrease font size

Металлургия стали: основные реакции сталеплавильных процессов, конвертерное производство стали, выплавка стали в подовых сталеплавильных агрегатах - Дутьевой режим плавки

Article Index
Металлургия стали: основные реакции сталеплавильных процессов, конвертерное производство стали, выплавка стали в подовых сталеплавильных агрегатах
Сталеплавильные шлаки
Хими­ческие свойства шлаков
Основные реакции сталеплавильных процессов
Основы синхронизации процессов обезуглероживания и нагрева металла
Окисление и восстановление кремния
Окисление и восстановление марганца
Окисление и восстановление фосфора
Удаление серы (десульфурация металла)
Конвертерное производство стали
Устройство кислородного конвертера с верхней продувкой
Шихтовые материалы и требования к ним
Технология кислородно-конвертерной плавки
Дутьевой режим плавки
Поведение составляющих чугуна при продувке
Шлакообразование и требования к шлаку
Поведение железа и выход годного металла
Материальный и тепловой баланс кислородно-конвертерной плавки
Переработка лома в конвертерах
Конвертерные процессы с донной продувкой кислородом
Поведение примесей
Сравнение процессов с верхней и донной продувкой кислородом
Конвертерные процессы с комбинированной продувкой
Выплавка стали в подовых сталеплавильных агрегатах
Устройство мартеновской печи
Конструкция отдельных элементов мартеновской печи
Основные особенности и разновидности мартеновского процесса
Основные периоды мартеновской плавки и их значение
Тепловая работа и отопление мартеновских печей
Шлакообразование и шлаковый режим мартеновской плавки
Скрап-кислородный процесс
Показатели и перспективы мартеновского производства стали
Сущность работы двухванных сталеплавильных агрегатов
Технология плавки в двухванных сталеплавильных агрегатах
Перспективы применения двухванных печей
All Pages

Дутьевой режим плавки


Режим подачи кислорода в конвертерную ванну оказывает большое влияние на длительность продувки, ход шлако­образования, величину входа жидкой стали и ее качество, на стой­кость футеровки конвертера.

Дутьевой режим плавки можно считать оптимальным, если обеспечивается выполнение следующих основных требований: 1) высокая скорость удаления примесей металла (окисления углеро­да) при наиболее полном и примерно постоянном усвоении кисло­рода; 2) быстрое шлакообразование; 3) отсутствие выбросов ме­талла и шлака; 4) минимальное образование выносов и дыма; 5) минимальное содержание газов в конечном металле. Выполнение этих требований возможно лишь при поддержании в заданных пределах основных параметров дутьевого режима, к которым от­носятся интенсивность подачи дутья (продувки), давление и чисто­та кислорода, положение (высота) фурмы над уровнем спокойной ванны и удельный расход кислорода.

Удельный расход кислорода изменяется в пре­делах от 47 до 57 м3/т стали, возрастая при увеличении содержания окисляющихся примесей в чугуне и снижаясь при увеличении доли стального лома в шихте, поскольку лом содержит меньше окисля­ющихся элементов, чем чугун.

Давление кислорода перед фурмой должно быть в определенных пределах. Выходные сопла Лаваля кислородной фурмы преобразуют энергию давления газа в кинетическую. Для достаточного заглубления кислородных струй в ванну и полного усвоения металлом кислорода необходима высокая кинетическая энергия струй, поэтому размеры сопел рассчитывают так, чтобы скорость струи на выходе из них составляла 450—500 м/с. Давление кислорода перед фурмой при этом должно быть 1,2—1,6 МПа.

Высота расположения фурмы имеет оптималь­ные пределы. При чрезмерно высоком расположении фурмы кислородные струи не будут внедряться в металл («поверхностный обдув») и будет низка степень усвоения кислорода; при чрезмерно низком положении («жесткая продувка») усиливается вынос капель металла отходящими газами и абразивный износ фурмы каплями металла, существенно замедляется шлакообразование и др. С учетом этого в конвертерах разной емкости фурму устанавливают на высоте, соответствующей расстоянию до уровня ван­ны в спокойном состоянии от 0,8 до 3,3 м. В этих пределах высота обычно возрастает при увеличении емкости конвертера и за­висит также от конкретных условий работы данного конвертера.

Изменение высоты положения фурмы во время продувки обычно используют для регулирования окисленности шлака и ускорения его формирования.

Интенсивность продувки (в отличие от расхода кислорода в единицу времени, который возрастает при росте емко­сти конвертера и для большегрузных конвертеров достигает 2000 м3/мин), не зависит от емкости; она определяется главным обра­зом конструкцией кислородной фурмы (числом сопел в ней) На разных заводах величина интенсивности J находится в пре­делах 3—5,0 и иногда доходит до 7 м3/т-мин при применении 7-ми сопловых фурм.

Интенсивность продувки J определяет длительность продувки t. Связь между величинами t и J примерно можно вы­разить следующим уравнением: t = Q/J, где Q — удельный расход кислорода, равный как выше отмечалось 47—57 м3/т.

Чистота кислорода оказывает большое влияние на качество стали, поскольку от нее зависит содержание в стали азота. Так, например, при использовании кислорода со степенью чистоты 98,3—98,7 % сталь содержит 0,004—0,008 % N, а при степени чистоты кислорода 99,5—0,002—0,004 % N. Для предотвра­щения насыщения металла азотом необходимо применять кислород c чистотой не менее 99,5 %.