Машиностроение и механика

  • Increase font size
  • Default font size
  • Decrease font size

Металлургия стали: основные реакции сталеплавильных процессов, конвертерное производство стали, выплавка стали в подовых сталеплавильных агрегатах - Сравнение процессов с верхней и донной продувкой кислородом

Article Index
Металлургия стали: основные реакции сталеплавильных процессов, конвертерное производство стали, выплавка стали в подовых сталеплавильных агрегатах
Сталеплавильные шлаки
Хими­ческие свойства шлаков
Основные реакции сталеплавильных процессов
Основы синхронизации процессов обезуглероживания и нагрева металла
Окисление и восстановление кремния
Окисление и восстановление марганца
Окисление и восстановление фосфора
Удаление серы (десульфурация металла)
Конвертерное производство стали
Устройство кислородного конвертера с верхней продувкой
Шихтовые материалы и требования к ним
Технология кислородно-конвертерной плавки
Дутьевой режим плавки
Поведение составляющих чугуна при продувке
Шлакообразование и требования к шлаку
Поведение железа и выход годного металла
Материальный и тепловой баланс кислородно-конвертерной плавки
Переработка лома в конвертерах
Конвертерные процессы с донной продувкой кислородом
Поведение примесей
Сравнение процессов с верхней и донной продувкой кислородом
Конвертерные процессы с комбинированной продувкой
Выплавка стали в подовых сталеплавильных агрегатах
Устройство мартеновской печи
Конструкция отдельных элементов мартеновской печи
Основные особенности и разновидности мартеновского процесса
Основные периоды мартеновской плавки и их значение
Тепловая работа и отопление мартеновских печей
Шлакообразование и шлаковый режим мартеновской плавки
Скрап-кислородный процесс
Показатели и перспективы мартеновского производства стали
Сущность работы двухванных сталеплавильных агрегатов
Технология плавки в двухванных сталеплавильных агрегатах
Перспективы применения двухванных печей
All Pages

Сравнение процессов с верхней и донной продувкой кислородом


Конвертерный процесс с донной подачей кислорода по сравнению с верхней подачей дутья, обладая значи­тельно лучшими условиями взаимодействия дутья с ванной, имеет следующие основные преимущества:

1) в 3—5 раз уменьшаются потери железа с отходящими газами, поскольку наиболее крупные частицы бурого дыма (Fе2О3) поглощаются при прохождении через слой металла и шлака

2) почти отсутствуют потери с выбросами из-за более спокойного хода продувки;

3) в 1,5—2 раза уменьшаются потери железа со шлаком вследствие меньшего содер­жания в шлаке окислов железа;

4) увеличивается выход жид­кой стали на 1,5-2% из-за п.1-3;

5) повышается и стабилизируется степень усвоения кис­лорода ванной, что облегчает управление процессом;

6) появляется возможность повышения интенсивности продувки, следовательно, производительности конвертера на 5-10%;

7) уменьшение расхода кислорода, объясняемое лучшим (на 5—10 %) его использованием в связи с тем, что окисляется меньше железа и меньшее количество углерода окисляется до СО2 (в отходящих газах содержится <5 % СО2, тогда как при продувке сверху до 10—15 %);

8) уменьшение количества окисляющегося при продувке марганца, что ведет к экономии ферромарганца;

9) более высокая степень дефосфорации и десульфурации;

10) уменьшается поглощение азота дутья вследствие понижения тем­пературы в зоне взаимодействия кислорода и металла;

11) создаются благоприятные условия для организации вдувания в ванну различных инертных газов (аргона, азота) и порошкообразных материалов (из­вести, графита, угля и др.).

12) уменьше­ние высоты конвертерной установки из-за отсутствия вертикально-перемещаемых фурм, что упрощает сооружение конвертерного цеха;.

Вместе с тем, для процесса с донной продувкой кислородом харак­терны следующие недостатки:

- необходимо применение порошкообразной извести, что требует специального оборудования для ее помола и вдувания;

- необходима продувка металла инертным газом для удаления водорода, а также подача через фурмы инертного газа или воздуха в межплавочные периоды для охлаждения фурм;

- усложняется конструкция и эксплуатация днища с системой подвода кислорода, защитной среды, инертного газа и измельченной извести;

- возникают простои конвертера при замене днищ, которая длится 8—20 ч;

- на 2—5 % уменьшается количество перерабатываемого лома, что связано с затратой тепла на разложение углеводородов и умень­шением прихода тепла от окисления железа (в шлак) и в результате уменьшения доли углерода, окисляющегося до CO2;

- необходимы специальные устройства для улавливания дыма и вы­носимых из конвертера капель металла при его наклоне.

Конвертерный процесс с донным топливно-кислородным дутьем хотя и имеет ряд преимуществ по сравнению с процессом с верхней подачей дутья, однако его применение целесообразно лишь в спе­цифических условиях: при переделе высокофосфористых и ванадийсодержащих чугунов, а также при выплавке особонизкоуглеродистой стали (< 0,05% С) из любого чугуна. При переделе обычных чугунов на сталь с нормальным содержанием углерода предпочти­тельна верхняя подача дутья, поскольку можно работать на куско­вой извести и обеспечить стойкость футеровки конвертера на порядок выше.