Машиностроение и механика

  • Increase font size
  • Default font size
  • Decrease font size

Металлургия стали: внепечная обработка стали, разливка стали в изложницы, непрерывная разливка стали - Основные узлы МНЛЗ

Article Index
Металлургия стали: внепечная обработка стали, разливка стали в изложницы, непрерывная разливка стали
Обработка металла вакуумом
Продувка металла инертными газами в ковш
Внеагрегатная десульфурация
Основы теории кристаллизации
Способы разливки стали
Сущность процесса кристаллизации
Гомогенное зарождение
Рост кристаллов
Разливка стали в изложницы
Изложницы
Подготовка оборудования к разливке
Строение стальных слитков
Усадочная раковина в слитке спокойной стали
Слиток кипящей стали
Слиток полуспокойной стали
Химическая неоднородность слитков
Температура и скорость разливки
Технология разливки стали в изложницы
Защита металла в изложнице от окисления
Методы снижения головной обрези
Особенности разливки кипящей стали
Способы повышения скорости разливки кипящей стали
Дефекты стальных слитков
Непрерывная разливка стали
Затвердевание непрерывного слитка
Структурная и химическая неоднородность непрерывнолитой заготовки
Классификация МНЛЗ
Вертикальные МНЛЗ
Горизонтальная МНЛЗ
Основные узлы МНЛЗ
Механизм качания кристаллизатора
Поддерживающие устройства
Технология непрерывной разливки
Качество непрерывнолитого слитка
Литейно-прокатные комплексы
All Pages

Основные узлы МНЛЗ


Современная МНЛЗ состоит из следующих элементов и узлов: сталеразливочного стенда; промежуточного ковша; тележки или стенда для промежуточного ковша; кристаллизатора; механизма возвратно-поступального движения кристаллизатора; опорных элементов и устройств зоны вторичного охлаждения; устройства для транспортировки слитка; затравки; механизма для ввода и уборки затравки; устройств для резки непрерывнолитого слитка на заготовки мерной длины; устройства для уборки и транспортировки заготовок к прокатному цеху и в отделение отделки заготовок; устройства для подачи твердой или жидкой смазки; оборудования для подачи воды в кристаллизатор; зону вторичного охлаждения и на охлаждение элементов МНЛЗ; электрооборудования; средств контроля и автоматизации.

clip_image048

Промежуточный ковш, снабженный одним (или не­сколькими) стаканом со стопором, обеспечивает постоянный по ходу разливки и небольшой напор струи металла, поступающего в кри­сталлизатор (за счет поддержания в ковше постоянного уровня металла высотой 0,6—1,2 м), регулирование стопором скорости по­дачи металла в кристаллизатор, подачу металла в несколько кри­сталлизаторов на многоручьевых МНЛЗ, разливку по методу «плавка на плавку».

1 – погружной стакан; 2 – стопор; 3 – промежуточный ковш; 4 – защитная труба; 5 – крышка; 6 – кристаллизатор; 7 – участок струи (бойное место); 8 – аварийный слив

Рисунок 29 – Устройство промежуточного ковша

Промежуточный ковш выполнятся сварным (см. рисунок 29) из стальных листов, футерованным огнеупорными материалами. Для уменьшения тепловых потерь он снабжен крышкой, футерованной кирпичом или набивной огнеупорной массой.

Для защиты металла от вторичного окисления используются погружные стаканы и защитные трубки (см. рисунок 29). Погружные стаканы предназначены для защиты металла на участке промежуточный ковш – кристаллизатор. Защитные трубы используются для защиты металла от контакта с воздухом на участке сталеразливочный ковш – промежуточный ковш и изготавливаются из шамотографита или плавленого кварца.

Кристаллизатор – медная полая водоохлаждаемая форма, в которой формируется профиль НЛЗ. Должен обеспечить быстрое формирование до­статочно толстой и прочной корки слитка без дефектов. Для обеспе­чения интенсивного теплоотвода стенки кристаллизаторов делают водоохлаждаемыми, а внутреннюю их часть, соприкасающуюся с жидким металлом, выполняют из высокотеплопроводной меди.

Внутренняя стенка кристаллизатора работает в тяжелых усло­виях (контакт с высокотемпературным расплавом, истирающее дей­ствие слитка, воздействие ферростатического давления и т. д.). С целью повышения температуры разупрочнения медь иногда легируют хромом или серебром, а для повышения износостойкости на рабочую поверхность наносят тонкий слой стойких к истиранию материалов. Во избежание выпадения в каналах нерастворимого осадка вода не должна нагре­ваться выше 40 °С, а чтобы обеспечить интенсивный теплоотвод, скорость потока воды должна быть равной 5—10 м/с. Расход воды составляет около 90 м3/ч на 1 м периметра полости кристаллизатора.

На МНЛЗ применяют кристаллизаторы трех типов: сборные, блочные и гильзовые. Все они в зависимости от формы технологической оси МНЛЗ могут быть прямолинейными и радиальными. Наиболее широкое распространение получили сборные кристаллизаторы, состоящие из четырех медных рабочих стенок, каждая из которых крепится шпильками к жесткой стальной плите (см. рисунок 30). Рабочие стенки выполняют из толстых (50—70 мм) мед­ных пластин (при малой толщине 10—20 мм происходит их коробле­ние, приводящее к образованию продольных трещин в корке слитка). Стойкость кристаллизаторов (без износостойких покрытий) составляет 100—150 больше­грузных плавок.


Рисунок 30 – Схема сборного кристаллизатора (обозначения в тексте)

clip_image050

Характерной особенностью сборного кристаллизатора является возможность изменения ширины отливаемой заготовки. Это достигается перемещением узких стен, вставленных между широкими, с помощью различных механических или электромеханических приводов.

Блочные кристаллизаторы изготавливают из сплошной медной заготовки, гильзовые — из медных цельнотянутых труб. Те и дру­гие используют при отливке слитков небольшого сечения и прямо­линейной формы.

Качество слитка в значительной степени определяется прочностью первичной корочки. При слабой корочке возможен ее разрыв в ре­зультате трения о стенки кристаллизатора при вытягивании слитка или выпучивание в зоне вторичного охлаждения. Обычно ее тол­щина на выходе из кристаллизатора составляет 15—25 мм. Увели­чение толщины корочки может быть достигнуто уменьшением ско­рости вытягивания или увеличением высоты кристаллизатора. Однако в первом случае снижается производительность установки, а во втором увеличивается трение между слитком и стенками кри­сталлизатора, а также возрастает опасность коробления кристалли­затора. В зависимости от сечения заготовки длина кристаллизатора составляет 700—1100 мм. Чтобы слиток более длительное время соприкасался со стенками кристаллизатора, внутренний профиль кристаллизатора иногда выполняют с обратной конусностью (т. е. нижнее сечение несколько меньше верхнего).

Для уменьшения трения (и вторичного окисления в кристаллизаторе) между слитком и стенками кристалли­затора между ними подается смазка в виде разнообразных масел или парафина, либо подаются шлаковые смеси.

Опыт эксплуатации МНЛЗ показали, что в результате прилипания корочки слитка к стенке кристаллизатора, а также вследствие коробления возможно зависа­ние слитка в кристаллизаторе. При этом образуются разрывы ко­рочки, что не только ухудшает поверхность слитка, но и может быть причиной аварии при разливке. Чтобы предотвратить зависание слитка, облегчить попадание смазки между слитком и стенкой кри­сталлизатора, а главное, обеспечить сваривание (залечивание) раз­рывов корочки, кристаллизатору сообщается возвратно-поступа­тельное движение с помощью меха­низма качания кристаллизатора.