Машиностроение и механика

  • Increase font size
  • Default font size
  • Decrease font size

Металлургия стали: внепечная обработка стали, разливка стали в изложницы, непрерывная разливка стали - Слиток кипящей стали

Article Index
Металлургия стали: внепечная обработка стали, разливка стали в изложницы, непрерывная разливка стали
Обработка металла вакуумом
Продувка металла инертными газами в ковш
Внеагрегатная десульфурация
Основы теории кристаллизации
Способы разливки стали
Сущность процесса кристаллизации
Гомогенное зарождение
Рост кристаллов
Разливка стали в изложницы
Изложницы
Подготовка оборудования к разливке
Строение стальных слитков
Усадочная раковина в слитке спокойной стали
Слиток кипящей стали
Слиток полуспокойной стали
Химическая неоднородность слитков
Температура и скорость разливки
Технология разливки стали в изложницы
Защита металла в изложнице от окисления
Методы снижения головной обрези
Особенности разливки кипящей стали
Способы повышения скорости разливки кипящей стали
Дефекты стальных слитков
Непрерывная разливка стали
Затвердевание непрерывного слитка
Структурная и химическая неоднородность непрерывнолитой заготовки
Классификация МНЛЗ
Вертикальные МНЛЗ
Горизонтальная МНЛЗ
Основные узлы МНЛЗ
Механизм качания кристаллизатора
Поддерживающие устройства
Технология непрерывной разливки
Качество непрерывнолитого слитка
Литейно-прокатные комплексы
All Pages

Слиток кипящей стали


В процессе разливки кипящей стали и после ее окончания сталь в изложнице «кипит», т. е. происходит окисление углерода по реакции [С] + [О] = СО с выделением пу­зырьков окиси углерода.

Окисление углерода и образование пузырьков СО происходит на поверхности формирующихся при затвердевании стали кристаллов. Значительная часть пузырей СО, выделяющихся при кипении остается в слитке. В дальнейшем они завариваются при прокатке.

Для уменьшения неоднородности состава готовой стали кипение вскоре после наполнения изложницы прекращают, накрывая слиток массивной металлической крышкой (механическое закупоривание) или раскисляя металл в верхней части изложницы алюминием (хими­ческое закупоривание).

В слитках кипящей стали не образуется концентрированной усадочной раковины. Усадка здесь рассредоточена по многочисленным газовым полостям. Форма слитка кипящей стали отличается от формы слитка спокойной стали. Поскольку в слитке отсутствует усадочная раковина нет необходимости применять изложницы, расширяющиеся кверху. Кипящую сталь разливают в сквозные изложницы, расши­ряющейся книзу. Это упрощает процесс раздевания слитков — из­ложницу просто снимают с затвердевшего слитка.

Механически закупоренный слиток кипящей стали характеризу­ется расположением газовых пу­зырей в определенном порядке. Структура механически закупоренного слитка кипящей стали, приведена на рисунке 22, а.


clip_image032

а— механически закупорены слиток;

б— хими­чески закупоренный слиток;

1 — плотная наруж­ная корочка;

2 — зона сотовых пузырей;

3 — промежуточная плотная зона;

4 — зона вторичных пузырей;

5 — скопление пузырей СО;

6 — cкопление пузырей и усадочных пустот;

7 — мост плотного металла

Рисунок 22 – Строение слитка кипящей стали

Толщина наружной корки без пузырей может изменяться от 2—3 до 40 мм и зависит от того удаляются или нет из металла образующи­еся при ее затвердевании пузырьки СО. В начале затвердевания корковой зоны высота вышележащего слоя металла и создаваемое им ферростатическое давление малы, благодаря чему при достаточной окисленности стали образуется большое число пузырьков СО. Их всплывание создает поток, интенсивность которого до­статочна для отрыва пузырьков, застревающих между осями расту­щих кристаллов, что обеспечивает формирование беспузыристого слоя металла.

Если же окисленность металла мала, а ферростатическое давление вследствие большой скорости разливки быстро нарастает, то заро­ждение пузырей затруднено, их образуется мало и не создается сильного потока всплывающих пузырей. В этих условиях пузыри, образующиеся в межосных пространствах кристаллов, остаются в металле, т, е. начинается рост сотовых пузырей.

Таким образом, чем ниже окисленностъ стали и чем выше скорость наполнения изложницы, тем ниже будет интенсивность кипения и меньше толщина беспузыристой корки.

Из оставшихся в металле пузырей по мере дальнейшего выделения окиси углерода формируются вытянутые сотовые пузыри, что свя­зано с образованием в это время зоны вытянутых столбчатых кри­сталлов. Идет сравнительно быстрый рост главных осей столбчатых кристаллов, между которыми скапливается выделяющаяся окись углерода. Длина сотовых пузырей составляет от 35 до 70—100 мм.

В верхней части слитка сотовых пузырей нет, так как они вымы­ваются потоком газа, поднимающегося снизу. Высота зоны сотовых пузырей обычно равна 1/2—2/3 высоты слитка; она возрастает при повышении скорости наполнения изложницы, снижении интенсив­ности кипения и уменьшения окисленности металла.

Прекращение роста сотовых пузырей связано с тем, что после сформирования малотеплопроводной пузыристой зоны скорость от­вода тепла заметно снижается и замедляется скорость роста главных осей столбчатых кристаллов, между которыми задерживались пу­зырьки СО. Образующиеся газы вымываются с более ровного фронта кристаллизации и формируется плотная промежуточная зона, кото­рая состоит из неориентированных кристаллов небольших размеров.

После накрывания слитка крышкой (замораживания его верха) кипение прекращается, поскольку пузырьки СО не могут образовы­ваться из-за повышения давления внутри закупоренного слитка. Вследствие прекращения циркуляции формировавшиеся в момент закупоривания пу­зыри фиксируются на границе затвердевания, образуя цепочку вторичных пузырей, равноудаленных от стенок изложницы (если крышку накрывают рано, в период роста сотовых пузырей, то после закупоривания прекращается их рост; вторичные пузыри образуются рядом с сотовыми, а зона плотного металла между сотовыми и вто­ричными пузырями в слитке отсутствует).

Затвердевание центральной части слитка идет без заметного газовыделения и циркуляции металла. Лишь в результате усадки кри­сталлизующейся стали давление внутри слитка немного снижается и создаются условия для образования отдельных пузырей. Скопле­ние их в верхней части слитка обусловлено повышением содержания здесь кислорода и углерода, вследствие ликвации, а также всплыванием пузырей снизу. Это скопление пузырей образует головную рыхлость, которая в осевой части слитка может распространяться на глубину до 25 % его высоты.

Верх слитка с пузырями и скоплением серы и фосфора вследствие их ликвации отрезают при прокатке; величина головной обрези составляет 5—9 % от массы слитка для рядовой стали и достигает 10—13 % для качественной стали.

Химически закупоренный слиток (см. рисунок 22, б) имеет в нижней части зону коротких сотовых пузырей и в верхней — скопление усадочных пустот и пузырей, над которыми, как правило, располо­жен мост плотного металла. До начала закупоривания и во время разливки сталь в изложнице кипит, формируется наружная бес­пузыристая корка и начинается рост сотовых пузырей так же, как в слитке при механическом закупоривании. Толщина здоровой корки такая же, как в механически закупоренном слитке 2-40мм и определяется уровнем окисленности стали и скоростью подъема металла в излож­нице.

В течение 1—1,5мин после окончания наполнения из­ложницы производят закупоривание слитка алюминием (иногда фер­росилицием). Вводимый алюминий связывает растворенный в стали кислород, поэтому прекращается кипение и рост сотовых пузырей. Длина сотовых пузырей зависит от времени химического закупоривания: их длина тем меньше, чем раньше был введен алюминий.

Расход алюминия на закупоривание выбирают таким, чтобы при дальнейшем затвердевании наблюдалось незначительное газовыделе­ние, которое должно компенсировать усадку стали и предотвращать образование концентрированной усадочной раковины. Пузыри СО образуются в верхней части слитка, поскольку здесь вследствие лик­вации повышается концентрация кислорода и углерода. Глубина сужающейся книзу зоны скопления пузырей и усадочных пустот может достигать 30—45 % высоты слитка.

При оптимальной раскисленности (оптимальном расходе алюми­ния на закупоривание) над областью усадочной рыхлости образуется «мост» плотного металла толщиной около 10 % высоты слитка. Он изолирует пустоты от атмосферы, благодаря чему последние завариваются при прокатке. Головная обрезь слитка при этом составляет 3,5—6 %. Показателем оптимальной степени раскисленности явля­ется формирование выпуклой гладкой поверхности слитка.

При недостаточной раскисленности металла наблюдаются прорывы поверхности слитка пузырями СО. Сплошность верхнего «моста» плотного металла нарушается и возрастает величина головной обрези, так как часть полостей в головной части слитка не заваривается при прокатке из-за окисления их внутренней поверхности. Если металл перераскислен, то образуется недостаточно изолированная сверху глубокая усадочная раковина со скоплением ликватов и неметалли­ческих включений. Головная обрезь при этом сильно возрастает, так как в прокате образуются несплошности в местах скопления ликватов и включений, а также в результате окисления внутренней по­верхности раковины.

Толщина здоровой корки — важный критерий качества слитков кипящей стали. Эта толщина может достигать 40 мм и не должна быть менее 8 мм. Более тонкая корка может окисляться при нагреве слитков перед прокаткой. Сотовые пузыри при этом обнажаются, их поверхность окисляется и поэтому они не завариваются при прокатке. В результате на поверхности проката образуются рва­нины.

Здоровая корка формируется во время наполнения изложницы металлом и ее толщина определяется интенсивностью кипения стали в этот период. Интенсивность кипения и толщина здоровой корки будут тем больше, чем выше окисленность жидкой стали и чем ниже скорость наполнения изложницы металлом.

Толщина здоровой корки зависит и от состава стали. Поскольку углерод и марганец снижают количество растворенного в стали кислорода (ее окисленность), получение достаточно толстой здоровой корки в сталях с повышенным содержанием этих элементов затруднено. Поэтому кипящие стали обычно содержат не более 0,27 % С и 0,60 % Мn.

Как показал опыт, окисленность жидкой стали, получаемая при существующих методах выплавки, позволяет разливать кипящую сталь со скоростью, не превышающей 1,0 м/мин; при большей ско­рости наполнения изложницы толщина здоровой корки получается менее допустимой (8—10 мм).

Если необходимо разливать сталь с большей скоростью, то при­бегают к использованию так называемых интенсификатеров кипения. В изложницу во время разливки вводят порошкообразные смеси, содержащие оксиды железа. Поступающий из интенсификатора в сталь кислород обеспечивает повышение интенсивности кипения и позволяет получать слиток с достаточной толщиной здоровой корки при скоростях разливки до 2,0—2,5 м/мин.

Для ускорения разливки применяют сочетание скоростной разливки с хи­мическим закупориванием: разливку ведут со скоростью 3—5 м/мин; при этом образование пузырей начинается у поверхности слитка, т. е. здоровая корка не образуется. Благодаря раннему химическому закупориванию размеры пузырей малы и при нагреве под прокатку наружный слой слитка с пузырями окисляется, вследствие чего на поверхности проката рванин не образуется.