Строение стальных слитков
Классификация стали по степени раскисленности
Сталь в зависимости от технологии выплавки и, главным образом, от степени раскисленности подразделяют на спокойную, кипящую и полуспокойную. Спокойную сталь обычно раскисляют марганцем, кремнием и алюминием. Активность кислорода при этом понижается настолько, что полностью прекращается реакция окисления углерода. Разливка и кристаллизация спокойной стали идут без заметного газовыделения. Кипящую сталь лишь частично раскисляют марганцем и в процессе ее разливки и затвердевания в изложнице активно идет процесс окисления углерода по реакции [О] + [С] -> {СО}. Обильное выделение пузырьков СО и сопутствующих им водорода и азота создает впечатление кипения стали. Полуспокойная сталь по степени раскисленности и соответственно по интенсивности газовыделения в процессе кристаллизации занимает промежуточное положение между спокойной и кипящей.
Особенности поведения стали в изложнице обусловливают различие в технологии разливки и строении слитка той или иной стали.
Слиток спокойной стали
Строение слитка спокойной стали представлено на рис. Слиток имеет следующие структурные зоны, отличающиеся формой кристаллов и их размерами: тонкая наружная корка из мелких равноосных кристалликов (6); зона вытянутых крупных столбчатых кристаллов (7 – 9); центральная зона крупных неориентированных кристаллов (5) и зона мелких неориентированных кристаллов внизу слитка, имеющая конусообразную форму («конус осаждения») (10).
1 — мост металла над раковиной: 2— усадочная раковина: 3 — усадочные пустоты; 4 — осевая усадочная рыхлость; 5 — зона беспорядочно ориентированных равноосных кристаллов; 6 — мелкие равноосные кристаллы; 7, 8 — зоны столбчатых кристаллов; 9 — столбчатые кристаллы, направленные к тепловому центру; 10 — конус осаждения
Наружная зона образуется в момент соприкосновения жидкой стали с холодными стенками изложницы. Резкое переохлаждение металла вызывает образование очень большого числа зародышей и их быстрый рост, в связи с чем кристаллы не успевают вырасти до значительных размеров и принять определенную ориентацию. Толщина корковой мелкокристаллической зоны невелика (6—15 мм), поскольку охлаждение жидкого металла с большой скоростью длится очень недолго.
В дальнейшем условия теплоотвода изменяются и формируется новая кристаллическая зона. Существенно уменьшается скорость охлаждения, так как отвод тепла замедляют корка затвердевшего металла, нагрев стенок изложницы и воздушный зазор, образующийся между стенками изложницы и слитком вследствие его усадки. Вместе с тем теплоотвод остается строго направленным, поскольку тепло отводится кратчайшим путем, т. е. перпендикулярно стенкам изложницы.
Вследствие замедления теплоотвода уменьшается переохлаждение и новых кристаллов почти не образуется. Продолжается рост кристаллов корковой зоны, причем растут главные оси кристаллов, направленные перпендикулярно стенке изложницы (поверхности охлаждения). Таким образом, формируется зона столбчатых кристаллов, вытянутых параллельно направлению теплоотвода. В крупных слитках с большим поперечным сечением наблюдается отклонение кристаллов к головной части слитка (к тепловому центру слитка).
Протяженность столбчатых кристаллов возрастает при увеличении перегрева жидкой стали, при росте скорости отвода тепла от затвердевшей части слитка и увеличении поперечного сечения слетка; она зависит также от состава стали (ее теплопроводности). В частности, протяженные столбчатые кристаллы наблюдаются в слитках никелевой и хромоникелевых сталей.
В центральной части слитка направленный теплоотвод почти не ощущается, поскольку здесь мала скорость отвода тепла и, кроме того, затвердевающий здесь металл удален от всех стенок изложницы примерно на одинаковое расстояние. Поэтому образующиеся кристаллы не имеют определенной ориентировки и получаются равноосными. Вследствие замедленного теплоотвода и отсутствия заметного переохлаждения количество вновь образующихся кристаллов невелико, поэтому имеющиеся кристаллы вырастают до значительных размеров.
Образование «конуса осаждения» в нижней части слитка обычно объясняют опусканием на дно изложницы кристаллов, зародившихся в объеме жидкого металла у фронта кристаллизации, а также обломившихся под воздействием потоков жидкого металла непрочных ветвей столбчатых кристаллов. Это опускание кристаллов происходит в силу разности плотностей затвердевшего и жидкого металла. Структурная неоднородность слитков затрудняет получение стальных изделий с одинаковыми механическими свойствами в различных частях.
Важной особенностью затвердевания слитка является наличие двухфазной зоны между жидким и полностью затвердевшим металлом. Это зона, где сосуществуют оси растущих кристаллов и незатвердевший металл в межосных пространствах. При увеличении протяженности двухфазной зоны возрастает время пребывания металла в двухфазном состоянии и сильнее развивается химическая неоднородность.
Необходимо отметить наличие в затвердевающем слитке конвективных потоков жидкого металла. У фронта кристаллизации поток направлен вниз, в осевой части слитка — вверх. Движение вниз возникает потому, что у фронта кристаллизации жидкий металл переохлажден и имеет большую плотность чем остальная его масса. Скорость потоков достигает 0,35 м/с; она тем больше, чем выше перегрев жидкой стали, поскольку при этом возрастает разность в температуре и плотности металла в объеме слитка и у фронта кристаллизации, По мере затвердевания слитка величина перегрева жидкого металла, а с ней и интенсивность потоков снижаются. Наличие конвективных потоков ведет к усилению химической неоднородности слитка.