Машиностроение и механика

  • Increase font size
  • Default font size
  • Decrease font size

Диэлектрические материалы - Пробой твердых диэлектриков

Article Index
Диэлектрические материалы
Поляризация диэлектриков
Диэлектрические потери
Электрический пробой диэлектриков
Пробой твердых диэлектриков
Пробой жидкостей
Пробой газообразных диэлектриков
Применение диэлектрических материалов
Полиакрилаты
Эластомеры
Материалы на основе волокон
Слоистые пластики
Неорганические стекла
Керамические диэлектрики
Природные неорганические диэлектрики
All Pages

Пробой твердых диэлектриков


В твердых диэлектриках различают три основных видов пробоя: электрический, электротепловой и электрохимический. Возникновение того или иного вида пробоя в диэлектрике зависит от его свойств, формы электродов, условий.

Электрический пробой – это пробой, обусловленный ударной ионизацией или разрывом связей между частицами диэлектрика непосредственно под действием электрического поля.

Электрическая прочность Епр твердых диэлектриков при электрическом пробое лежит в сравнительно узких пределах – 100 ÷ 1000 МВ/м, что близко к Епр сильно сжатых газов и очень чистых жидкостей. Величина Епр обусловлена главным образом внутренним строением диэлектрика (плотностью упаковки атомов, прочностью их связей) и слабо зависит от таких внешних факторов, как температура, частота приложенного напряжения, форма и размеры образца (за исключением очень малых толщин). Характерно очень малое время электрического пробоя – менее микросекунды.

Электротепловой пробой обусловлен нарушением теплового равновесия диэлектрика вследствие диэлектрических потерь.

Мощность, выделяющаяся в образце диэлектрика емкостью С, при подаче на него напряжения U (действующее значение) с угловой частотой ω [соотношение (2.9)]

P~ =U2 ω C tg δ.

Тепловая мощность, отводимая от образца, пропорциональна площади теплоотвода S и разности температур образца T и окружающей среды T0:

P~ =kS(T-T0), (2.11)

где k – коэффициент теплоотдачи.

Условие теплового равновесия определяется равенством мощностей, поглощаемой и рассеиваемой: P~ =Pp. Так как tg δ обычно растет с повышением температуры, то, начиная с некоторой критической температуры Ткр, значение P~ >Pp (рис. 2.11); другая точка равенства P~ и Pp(T1) соответствует устойчивому равновесию. В результате превышения тепловыделения над теплоотдачей диэлектрик лавинообразно разогревается, что приводит к его разрушению (плавлению, сгоранию).

Согласно условию теплового равновесия

clip_image048, (2.12)

где tg δ соответствует критической температуре Ткр.

clip_image050

Рис. 2.11. Зависимость мощности, поглощаемой P~ и рассеиваемой Рр образцом диэлектрика, от его температуры

Следовательно, из данного материала при заданной рабочей частоте изоляция может быть изготовлена в расчете на пробивное напряжение не выше указанного значения. Это напряжение зависит от коэффициента диэлектрических потерь и других параметров.

В отличие от электрического пробоя напряжение электротеплового пробоя, как видно из (2.12), зависит от частоты:

clip_image052, (2.13)

где А - постоянная (частотной зависимостью диэлектрических потерь пренебрегаем).

Следовательно, Uпр снижается на высоких частотах. Аналогично Uпр при тепловом пробое зави сит от температуры, снижаясь с ее повышением за счет роста tg δ [см. (2.12)]. По указанным причинам с повышением частоты f или температуры Т, когда напряжение теплового пробоя UПР.Т велико, происходит электрический пробой, а при высоких f или Т, когда UПР.Т снижается до значений, меньших напряжения электрического пробоя UПР.Э, пробой становится электротепловым (рис. 2.12).

Критическая частота fкр или температура Ткр, при которых происходит переход от электрического к тепловому пробою, зависят от свойств диэлектрика, условий теплоотвода изоляции, времени приложения напряжения, скважности импульсов.

0

clip_image054

Рис. 2.12. Типичная зависимость пробивного напряжения от частоты и температуры

Пробивное напряжение с увеличением длительности действия приложенного напряжения уменьшается из-за дополнительного разогрева диэлектрика, а также химического старения и других явлений. При кратковременном приложении напряжения (например, импульсного) вероятность теплового пробоя мала даже при сравнительно большой проводимости, так как образец не успевает прогреться.

Электрическая прочность при тепловом пробое уменьшается с ростом толщины диэлектрика вследствие увеличения его неоднородности и ухудшения теплоотдачи.

В диэлектриках, длительно находящихся в электрическом поле, может происходить электрохимический пробой вследствие электролиза, ионизации газовых включений и т.д. Эти процессы приводят к химическому старению диэлектрика. Конечной стадией электрохимического пробоя чаще всего является тепловой пробой.

Наибольшей электрической прочностью обладают твердые диэлектрики, однородные по структуре, имеющие низкую электрическую проводимость, повышенные теплопроводность и нагревостойкость (пленочные фторопласт-4, полиэтилен, лавсан, слюда и т.д.). Епр таких материалов достигает 100–300 МВ/м.