Машиностроение и механика

  • Increase font size
  • Default font size
  • Decrease font size

Диэлектрические материалы

Article Index
Диэлектрические материалы
Поляризация диэлектриков
Диэлектрические потери
Электрический пробой диэлектриков
Пробой твердых диэлектриков
Пробой жидкостей
Пробой газообразных диэлектриков
Применение диэлектрических материалов
Полиакрилаты
Эластомеры
Материалы на основе волокон
Слоистые пластики
Неорганические стекла
Керамические диэлектрики
Природные неорганические диэлектрики
All Pages

Диэлектрические материалы

Электропроводность диэлектриков

Основными свойствами, определяющими применение диэлектриков в электро- и радиотехнической аппаратуре, являются их изолирующие качества, а также способность создавать электрическую емкость за счет существования внутреннего электрического поля, то есть поляризации.

Для выполнения функции электрической изоляции диэлектрические материалы должны препятствовать прохождению электрического тока путями, нежелательными для работы прибора. С этой точки зрения основной характеристикой диэлектриков является величина удельной электропроводности или удельного сопротивления.

Особенностью электропроводности твердых диэлектриков является то, что ввиду их большого удельного сопротивления ток через объем диэлектрика сравним с током по поверхности (рис. 2.1), поэтому общий ток изоляции

I = Iv + Is. (2.1)

При характеристике диэлектрика различают объемную и поверхностную удельные электропроводности (sv и ss). Величины, обратные электропроводности, – удельные объемное и поверхностное сопротивления (rv и rs).

Удельным объемным сопротивлением (rv) называют сопротивление куба диэлектрика с ребром, равным единице длины, если ток протекает через две противоположные грани. Значение rv большинства диэлектриков находится в пределах 106 - 1016 Ом×м.

clip_image002

Рис. 2.1. Виды электрического тока в образце диэлектрика после
приложения электрического поля

Удельным поверхностным сопротивлением (rs) называют сопротивление квадрата поверхности диэлектрика с любой стороной, если ток протекает через две противоположные стороны. Значение удельного поверхностного сопротивления, как правило, на порядок выше объемного, т.е. 107 - 1017 Ом, но оно в сильной степени зависит от величины и состояния поверхности (наличия влаги, проводящих веществ) и не является характеристикой материала.

Сопротивление изоляции диэлектрика определяется как результирующее двух сопротивлений (Rv и RS), включенных параллельно:

clip_image004. (2.2)

Для диэлектрика с сечением S и толщиной h объемное сопротивление определяется как

clip_image006, (2.3)

откуда можно определить rv.

Другой характерной особенностью электропроводности диэлектриков является постепенное спадание тока со временем (рис. 2.2), после включения постоянного напряжения (замыкания контакта К на рис. 2.1). С течением времени ток достигает некоторой постоянной величины, называемой током сквозной проводимости (Iскв). Величина Iскв определяется наличием в диэлектрике свободных носителей заряда. Спадающая часть тока называется током абсорбции Iабс (рис. 2.1 и 2.2), обусловленным наличием в диэлектрике замедленных видов поляризации.

clip_image008

Рис. 2.2. Зависимость тока в диэлектрике от времени приложения
электрического поля

При измерении удельного сопротивления ток абсорбции необходимо исключить. Для этого образец выдерживают под напряжением некоторое время, в течение которого завершаются процессы поляризации (обычно одну минуту). Объемное сопротивление в этом случае определяется по формуле

clip_image010. (2.4)

Электропроводность диэлектриков определяется зарядом свободных носителей (q), их концентрацией (n), подвижностью (m) и чаще всего носит не электронный, а ионный характер. Это связано с тем, что ширина запрещенной зоны DЕ в диэлектриках велика и лишь ничтожное количество электронов может отрываться от своих атомов за счет теплового движения. Ионы же часто оказываются слабо связанными в узлах решетки (особенно примесные) и под действием тепловой энергии становятся свободными. Например, в кристалле NaCl DE = 6 эВ, и, несмотря на то, что подвижность иона меньше подвижности электрона, ионная электропроводность больше электронной за счет значительно большей концентрации свободных ионов.

Удельная электропроводность твердых диэлектриков увеличивается с ростом температуры по экспоненциальному закону:

clip_image012~clip_image014, (2.5)

где W0 – энергия активации ионной проводимости.

Однако эта зависимость определяется не температурной зависимостью концентрации носителей, а ростом подвижности. Это связано с тем, что дрейфовая подвижность ионов мала и их движение осуществляется путем перескока с ловушки на ловушку, разделенные потенциальным барьером высотой W0, соответствующим энергии активации ионов (так называемая прыжковая проводимость).

В качестве ловушек для ионов могут выступать различные дефекты структуры, например вакансии, характеризующиеся незавершенными химическими связями вследствие отсутствия атома на “положенном” месте в структуре. Вероятность таких перескоков под действием тепловой энергии прямо пропорциональна exp(W0/kT) (рис. 2.3).

clip_image016

Рис. 2.3. Модель ионной проводимости твердых диэлектриков: а – без внешнего поля; б – понижение потенциального барьера W0 на величину qex при наложении электрического поля напряженностью e (W1 – глубина междоузельной потенциальной ямы)

В широком диапазоне температур зависимость lns = f(1/T) состоит из двух прямолинейных участков (рис. 2.4) с различными углами наклона к оси абсцисс. При температуре выше точки перегиба А электропроводность определяется в основном собственными ионами (собственная электропроводность). Ниже перегиба, в низкотемпературной области, зависимость более пологая и определяется наличием в диэлектрике ионов примеси (примесная электропроводность). По углам наклона участков прямых зависимости lns = f(1/T) можно определить энергию активации носителей заряда и их природу.

clip_image018

Рис. 2.4. Температурная зависимость электропроводности диэлектриков

Некоторые твердые диэлектрики, особенно в области высоких температур, обладают электронной или дырочной проводимостью (титаносодержащие керамические материалы). Однако носителями часто являются электроны не основного вещества, а примесей.