Машиностроение и механика

  • Increase font size
  • Default font size
  • Decrease font size

Диэлектрические материалы - Диэлектрические потери

Article Index
Диэлектрические материалы
Поляризация диэлектриков
Диэлектрические потери
Электрический пробой диэлектриков
Пробой твердых диэлектриков
Пробой жидкостей
Пробой газообразных диэлектриков
Применение диэлектрических материалов
Полиакрилаты
Эластомеры
Материалы на основе волокон
Слоистые пластики
Неорганические стекла
Керамические диэлектрики
Природные неорганические диэлектрики
All Pages

Диэлектрические потери


Удельными диэлектрическими потерями называется энергия, рассеиваемая в виде тепла в единице объема и в единицу времени в диэлектрике, находящемся в электрическом поле, и вызывающая его нагрев. При постоянном поле потери обусловливаются током сквозной проводимости – движением ионов, иногда – свободных электронов. Потери на сквозную электропроводность присущи в большей или меньшей мере всем диэлектрикам без исключения. Величина потерь на сквозную электропроводность определяется удельным сопротивлением rv, а в твердых диэлектриках также и удельным поверхностным сопротивлением rs.

При переменном поле различают следующие виды потерь:

1) потери на сквозную электропроводность; 2) поляризационные потери, обусловленные замедленной поляризацией; 3) ионизационные потери; 4) потери, обусловленные неоднородностью структуры. Для вывода выражения мощности потерь пользуются эквивалентной схемой диэлектрика, состоящей из последовательно или параллельно включенных активного сопротивления R и емкости С. Эквивалентная схема выбирается так, чтобы расходуемая активная мощность была равна мощности, рассеиваемой в диэлектрике конденсатора, а вектор тока был сдвинут относительно вектора напряжения на тот же угол, что и в рассматриваемом конденсаторе.

В идеальном вакуумном конденсаторе без потерь угол между векторами тока clip_image032 и напряжения clip_image034 равен 900 (рис. 2.8,а). Чем больше рассеиваемая в диэлектрике мощность, переходящая в тепло, тем меньше угол сдвига фаз j и тем больше угол диэлектрических потерь d и его функция tgd (рис. 2.8,б). Тангенс угла диэлектрических потерь (tgd) – параметр, учитывающий все виды потерь в диэлектрике и представляющий собой тангенс угла, дополняющего угол сдвига фаз между током и напряжением в емкостной цепи до 900. Тангенс угла диэлектрических потерь равен отношению

clip_image036, (2.8)

а мощность диэлектрических потерь в переменном электрическом поле

clip_image038, (2.9)

clip_image040

Рис. 2.8. Векторные диаграммы для конденсатора с идеальным диэлектриком (а) и диэлектриком с потерями (б)

где U – приложенное напряжение; w=2pf – частота. Из выражения (2.8) следует, что диэлектрические потери существенно влияют на работу аппаратуры высокого напряжения, высокочастотной и, в особенности, одновременно высокочастотной и высоковольтной. Тангенс угла диэлектрических потерь зависит от состава и структуры диэлектриков, от агрегатного состояния, а также от условий эксплуатации.

У чистых однородных неполярных диэлектриков диэлектрические потери малы и обусловлены только током сквозной проводимости; tgd незначителен, порядка 10-4, с ростом частоты падает (рис. 2.9, кривая 1), так как Iа от частоты практически не зависит, а реактивный ток Ic увеличивается. Для таких диэлектриков при повышении температуры tgd возрастает за счет увеличения тока сквозной проводимости (рис. 2.10, кривая 1).

Полярные диэлектрики, у которых потери обусловлены как сквозной проводимостью (иногда значительной), так и релаксационными видами поляризации, имеют высокий tgd ~ 10-2 - 10-1. Частотная и температурная зависимости tgd таких диэлектриков имеют максимумы, показанные на рис. 2.9 и 2.10, кривая 2. Появление максимума на зависимости tgd(f) объясняется инерционностью диполей и дипольных групп, не успевающих ориентироваться по полю за полупериод его изменения. Общий характер частотной зависимости соответствует кривой 1, рис. 2.9, т. е. потерям на сквозную электропроводность. При наличии нескольких релаксаторов появляется соответствующее число максимумов tgd.

0

clip_image042

Рис. 2.9. Частотная зависимость tgd для диэлектриков с потерями на сквозную электропроводность (1); с потерями на электропроводность и поляризационными потерями (2)

0

clip_image044

Рис. 2.10. Зависимость tgd от температуры для неполярных (1) и полярных (2) диэлектриков

Появление максимумов на температурной зависимости tgd полярных диэлектриков объясняется тем, что по мере повышения температуры закрепленные диполи, получившие дополнительную энергию, получают большую свободу перемещения и ориентации по полю. При этом возрастает мощность диэлектрических потерь и tgd. Начиная с определенной температуры, соответствующей максимуму tgd на его температурной зависимости, энергия теплового движения становится выше энергии электрического поля, нарушается ориентация диполей, затрата энергии уменьшается и tgd снижается. При высоких температурах tgd полярных диэлектриков возрастает за счет роста тока сквозной проводимости.

У диэлектриков с газовыми включениями tgd растет при увеличении напряжения вследствие ионизации газа. Поэтому пористые диэлектрики непригодны для высоковольтной аппаратуры. У гигроскопичных материалов tgd имеет повышенное значение, так как вода является источником свободных ионов.

Для неоднородных и композиционных диэлектриков tgd зависит от природы и распределения включений, специальных наполнителей. Значение tgd cлоистых пластмасс может изменяться в широких пределах в зависимости от количественных соотношений компонентов, достигая нескольких единиц.

Наименьшие потери имеют однородные диэлектрики плотной структуры с минимальным содержанием примесей, имеющие мгновенную поляризацию. К таким материалам относятся полистирол, полиэтилен, фторопласт-4, трансформаторное масло, слюда, высокочастотный стеатит и др. Особенно высокие требования предъявляются к диэлектрикам, применяемым на высоких частотах и в высоковольтной аппаратуре.