Машиностроение и механика

  • Increase font size
  • Default font size
  • Decrease font size

Диэлектрические материалы - Неорганические стекла

Article Index
Диэлектрические материалы
Поляризация диэлектриков
Диэлектрические потери
Электрический пробой диэлектриков
Пробой твердых диэлектриков
Пробой жидкостей
Пробой газообразных диэлектриков
Применение диэлектрических материалов
Полиакрилаты
Эластомеры
Материалы на основе волокон
Слоистые пластики
Неорганические стекла
Керамические диэлектрики
Природные неорганические диэлектрики
All Pages

Неорганические стекла


Стекловидные вещества характеризуются тем, что при охлаждении затвердевают, не кристаллизуясь, образуют неупорядоченное твердое тело. Свойства такого тела постоянны независимо от пространственного направления.

Стекла по своему строению неоднородны, гетерогенны. В них могут содержаться поры, включения других веществ. При этом поры составляют до 60 % объема стекла, поэтому электрическое поле в нем неоднородно, что приводит к существенному снижению электрической прочности.

По химическому составу стекла обычно представляют собой сложные системы окислов. Наиболее распространенными техническими стеклами являются силикатные на основе SiO2. Стекла подразделяются на 1) щелочные (оконные, бутылочные и т.п.), содержащие окислы натрия и калия; 2) щелочные с высоким содержанием окислов тяжелых металлов (PbO, BaO); стекла с большим содержанием PbO называют флинтами, а с большим содержанием BaO – кронами; 3) бесщелочные – кварцевое стекло, представляющее собой чистую двуокись кремния SiO2. Последние два вида используют в качестве электроизоляционных и оптических стекол. У них высокие значения ε и ρ и малые tg δ. Например, для кварцевого стекла ε = 3,8; ρ = 1015 Ом·м; ε = 6 - 8; tg δ = 2*10-4; Eпр = 60 МВ/м.

Оптическое стекло применяется в изготовлении линз очков и медицинских приборов. Имеется семь сортов класса крон и семь сортов флинтов, что позволяет подобрать стекла с нужным показателем преломления от 1,47 (легкий крон) и до 1,75 – тяжелый флинт. Очковые стекла изготавливают из стекла класса крон с показателем преломления nD=1.52.

При изготовлении очков-светофильтров для световой защиты глаз сварщиков, металлургов и др. применяют цветное стекло: окрашенное в синий цвет окислами кобальта и железа, желто-зеленого цвета, окрашенное окислами железа с различным коэффициентом пропускания светового потока.

Наконец, для защиты от рентгеновских и гамма-лучей изготовляют специальное защитное стекло с большим содержанием окислов свинца, ослабляющего энергию излучения и снижающего дозу, действующую на человека, до установленных допустимых значений.

Большинство стекол благодаря содержанию смеси оксида железа сильно поглощают ультрафиолетовые лучи. Увиолевые стекла, содержащие менее 0,02% Fe2O3, обладают прозрачностью для ультрафиолетовых лучей; хорошо пропускают эти луча кварцевые стекла, которые применяют в специальных кварцевых лампах, дающих ультрафиолетовое излучение.

В зависимости от назначения различают несколько основных видов электротехнических стекол: электровакуумные, изоляторные, конденсаторные, стеклоэмали, стекловолокна.

Электровакуумные стекла используют для изготовления баллонов и ножек осветительных ламп, различных электронных приборов. Важнейшее требование к таким стеклам – очень близкие коэффициенты термического расширения у спаиваемых друг с другом стекла и металла.

Изоляторные стекла используют в производстве различных изоляторов: линейных, в том числе штыревых и подвесных, станционных — опорных и проходных (вводы), телеграфных, антенных и др. Электрическая емкость стеклянных изоляторов, и в частности подвесных, больше, чем фарфоровых. Изоляторные стекла широко используют также в качестве герметизированных вводов в некоторых типах конденсаторов, терморезисторов, в кремниевых и германиевых транзисторах и др.

Конденсаторные стекла служат для изготовления электрических конденсаторов, используемых в импульсных генераторах и в качестве высоковольтных фильтров. Для этих изделий необходимо, чтобы у стекол были высокие значения Епр и ε, а у стекол для высокочастотных конденсаторов, кроме того, еще и малые значения tg δ.

Стеклоэмали — это стекловидные покрытия (стекла), наносимые на поверхности металлических и керамических изделий с целью создания электрической изоляции, защиты от воздействия влаги, коррозии, а также для придания определенной окраски и улучшения внешнего вида. Например, стеклоэмаль для покрытия трубчатых резисторов представляет собой борно-свинцовое стекло, окрашенное двуокисью марганца в коричневый цвет. Ее состав: РbО — 27 %, Н3ВО3 — 70 %, МnО2 — 3 %; Тр≈ 600 °С, для повышения термо- и влагостойкости в эмаль добавляют кварцевый песок. Стеклоэмалевая изоляция наносится следующим образом: поверхность изделия, нагретого до определенной температуры, посыпают порошком стеклоэмали, которая оплавляется и покрывает поверхность тонким (0,1—0,2 мм) и прочным стекловидным слоем. Покрытие можно наносить несколько раз до получения требуемой толщины. Для стойкости стеклоэмали к термоударам необходимо, чтобы ее ТКЛР и ТКЛР материала, на поверхность которого наносят стеклоэмаль, были примерно равны. Стеклоэмаль для керамических изделий называют глазурью.

Стекловолокно получают из расплава стекла, чаще из бесщелочного алюмоборосиликатного. Это стекло обладает лучшими электрическими характеристиками, большей химостойкостью и большей (на 20—25 %) механической прочностью при растяжении, чем щелочные алюмосиликатные стекла. Образующиеся тонкие (4—7 мкм) волокна используют для изготовления изоляции монтажных и обмоточных проводов, микропроводов, стеклянных тканей (и лент), используемых в производстве нагревостойких стеклолакотканей и стеклотекстолитов. Короткое стекловолокно применяют в качестве наполнителя в пресс-материалах. Применяют стекловолокно также для изготовления стеклянной ваты, матов и изделий волоконной оптики — световодов, которые в настоящее время широко используют в качестве оптоволоконных кабелей в вычислительной технике и в электрической связи.

Световоды состоят из нескольких десятков тысяч параллельно уложенных в пучки световедущих волокон диаметром 20—30 мкм. Диаметр самого световода достигает 5—6 мм. Световедущее волокно состоит из сердцевины и оболочки, материал для которых подбирается таким образом, чтобы коэффициент преломления света n1 сердцевины был больше коэффициента преломления света n2 оболочки (n1> n2). Поэтому для изготовления сердцевины световедущего волокна используют стекла типа тяжелых флинтов, баритовых флинтов и сверхтяжелых кронов, а для изготовления оболочек — стекла типа крона или легкого крона. Стекла указанных типов изготавливают на основе чистого кварца.

Световой луч, падающий на входной торец волокна, распространяется по нему вдоль благодаря многократному полному внутреннему отражению от поверхности раздела сердцевина-оболочка и выходит из противоположного торца. Качество световода (потери световой энергии) зависит в первую очередь от степени чистоты исходных материалов и стерильности на всех этапах его производства.

Так, например, для освещения используют более дешевые полимерные волокна из полиметилметакрилата, полистирола и др.

Ситаллы — это поликристаллический непрозрачный материал, полученный путем направленной кристаллизации стекол специального состава. Степень кристалличности ситаллов может составлять 30—95 %, а размер кристаллитов 0,01—2 мкм, усадка при кристаллизации достигает 2 %. Название «ситалл» произошло от сокращения слов «силикат» и «кристалл».

При изготовлении ситаллов в стекломассу вводят специальные добавки, служащие для образования центров (зародышей) кристаллизации. В зависимости от природы введенной добавки и последующей технологии кристаллизации различают термоситаллы и фотоситаллы.

Термоситаллы образуются в результате двухступенчатой термообработки. На первой стадии термообработки (при 500—700 °С) происходит образование центров кристаллизации, на второй (при 900—1100 °С) - кристаллизация самой стекломассы. В качестве стимуляторов процесса кристаллизации обычно используют ТiО2, FeS, фториды и фосфаты щелочных и щелочно-земельных металлов.

Фотоситаллы образуются (кристаллизуются) в результате УФ-облучения с последующей низкотемпературной обработкой. В качестве стимуляторов кристаллизации используют коллоидные частицы Ag, Аu, Сu и другие, выделяющиеся из соответствующих окислов под влиянием облучения и образующие центры кристаллизации.

Особую область применения имеют фотоситаллы. Если подвергнуть заготовку из светочувствительного стекла УФ-облучению (засветке) через трафарет с последующей термообработкой, то кристаллизуется только облученная часть поверхности. Эта закристаллизованная часть при обработке кислотой будет растворяться. Затем заготовку можно опять облучить и протравить кислотой и т.д., до тех пор, пока изделие не примет нужную форму.

Электрические свойства ситаллов, как правило, выше, чем у стекол того же состава, а по сравнению с керамикой у ситаллов того же состава более высокая Епр. ε=5-7, ρ =1010-1012 Ом·м; tg δ = (l-80)·10-3; Епр = 20-80 МВ/м, интервал рабочей температуры от - 50 до 700 °С.

Ситаллы используют в качестве подложек для тонкопленочных и гибридных микросхем, опор для крепления разрядников.