ЭЛЕВАТОРЫ
Элеваторы являются подъемниками вертикального действия и служат для вертикального и крутонаклонного (под углом 60–82º) перемещения насыпных и штучных грузов без промежуточной загрузки и разгрузки. Применение элеваторов в качестве междуэтажного транспортного средства даёт возможность иметь компактные транспортные схемы, занимающие малые площади.
В качестве тягового элемента элеваторов используются резинотканевые или резинотросовые конвейерные ленты и цепи пластинчатые, втулочные, роликовые и катковые с шагом 100–630 мм или сварные круглозвенные с термообработкой звеньев.
По типу грузонесущего элемента элеваторы классифицируют на ковшовые (для перемещения сыпучих грузов), полочные и люлечные (для перемещения штучных грузов).
Ковшовые элеваторы
Применяются на предприятиях химической, металлургической, машиностроительной промышленности, в производстве строительных материалов, на углеобогатительных фабриках, на пищевых комбинатах, в зернохранилищах. Ковшовые элеваторы выполняются стационарными и передвижными (на погрузочных машинах); используются как транспортные и технологические машины [1, 2].
Преимуществами ковшовых элеваторов являются: малые габаритные размеры в плане; большая высота подачи груза (60–75 м); большой диапазон производительности (5–500 м3/час); широкий ассортимент транспортируемых грузов. К недостаткам ковшовых элеваторов относятся: возможность отрыва ковшей при перегрузках; необходимость равномерной подачи груза.
Основными параметрами ковшовых элеваторов являются: производительность Q; ширина ковша 100–1000 мм; шаг ковшей 160–800 мм; скорость 0,4–2,5 м/с; высота подъема; мощность приводного двигателя Р (кВт).
Устройство, назначение, особенности конструкций элеваторов
Ковшовые элеваторы классифицируют по типу тягового элемента на ленточные и цепные; по направлению перемещения ковшей – на вертикальные и наклонные со свободно свисающей или поддерживаемой обратной ветвью (рис. 5.1).
Рис. 5.1. Схема круто наклонного элеватора:
а – ленточного; б – цепного со свободно свисающей обратной ветвью;
в – двухцепного с поддерживаемой обратной ветвью
Ковшовые элеваторы имеют вертикально замкнутый тяговый элемент (ленту, цепь) с жёстко прикреплёнными к нему грузонесущими элементами (ковшами), тяговый элемент огибает верхний приводной и нижний натяжной барабаны (или звёздочки) (рис. 5.2).
Привод элеватора – редукторный, размещается в верхней части элеватора, при малой мощности применяют мотор-редукторы, привод снабжён остановом для предохранения от обратного движения ходовой части.
Натяжное устройство – винтовое, пружинно-винтовое или грузовое в зависимости от типа тягового элемента, привода и высоты. НУ располагается на валу нижнего барабана (звездочки), ход натяжного устройства составляет 200–500 мм. Ходовая часть и поворотные устройства элеватора помещаются в закрытом металлическом кожухе, который является силовым каркасом, воспринимающим статические и динамические нагрузки. Кожух состоит из верхней части (разгрузочный патрубок или головка элеватора), средних секций и нижней части (загрузочный носок). В боковых стенках кожуха располагаются люки с герметичными дверцами для обслуживания и ремонта. Секции кожуха соединяют между собой болтами, высота секций составляет 2–2,5 м.
Рис. 5.2. Схема ковшового элеватора:
1 – приводной барабан; 2 – разгрузочный патрубок; 3 – смотровые люки; 4 – кожух;
5 – тяговый элемент; 6 – направляющие шины; 7 – натяжное устройство;
8 – загрузочный башмак; 9 – ковши; 10 – привод
Насыпной груз подаётся в загрузочный патрубок (носок) нижней части элеватора, загружается в ковши, поднимается в них и разгружается на верхнем барабане (звёздочке) в патрубок верхней части элеватора. Нижняя часть кожуха может быть с высоким и низким расположением загрузочного носка: высокий носок с днищем под углом 60° применяют при транспортировании влажных плохо сыпучих грузов, низкий носок (с днищем под углом 45°) – для сухих хорошо сыпучих грузов.
Выбор способа расположения ковшей их крепления на тяговом элементе зависит от характеристики груза и способа загрузки и разгрузки. По скорости движения ковшей элеваторы бывают быстроходные и тихоходные; по расположению ковшей: с сомкнутыми ковшами (для транспортирования крупнокусковых и абразивных грузов) и расставленными ковшами (для перемещения мелкофракционных грузов). Конструкция ковша (табл. 5.1) зависит от свойств транспортируемого груза и способов загрузки и разгрузки.
Применяются четыре типа ковшей вертикальных элеваторов: глубокие и мелкие со скругленным (цилиндрическим) днищем и ковши с бортовыми направляющими с остроугольным и скругленным днищем. Основные параметры ковша: ширина В; вылет L; высота Н; объем v0.
Таблица 5.1
Типы ковшей ковшовых элеваторов
Конструктивное исполнение ковша |
Тип ковша |
Глубокий с цилиндрическим днищем |
|
Мелкий с цилиндрическим днищем |
|
Остроугольный с бортовыми направляющими |
|
С бортовыми направляющими и скругленным днищем |
Глубокие и мелкие ковши применяют только на элеваторах с расставленными ковшами для перемещения сухих легкосыпучих пылевидных, зернистых и мелкокусковых грузов (зерно, песок, земля, мелкий уголь). Мелкие ковши перемещают влажные и слеживающиеся плохосыпучие пылевидные, зернистые и мелкокусковые грузы (угольная пыль, мел, мокрая зола).
Ковши с бортовыми направляющими и остроугольным днищем применяют на тихоходных цепных элеваторах для перемещения пылевидных, зернистых и мелкокусковых грузов. Ковши с бортовыми направляющими имеют только сомкнутое расположение.
Глубокие и мелкие ковши изготавливают из листовой стали толщиной 1–6 мм сваркой или штамповкой; из чугуна, пластмассы или резины, для предохранения от преждевременного износа переднюю стенку ковша укрепляют накладками из твердой стали. Ковши крепят к ленте болтами с применением резиновых прокладок (рис. 5.3); к цепям крепят с помощью уголков или фасонных звеньев на болтах или заклепках.
При ширине ковшей до 320 мм используют одну цепь с центральным креплением к задней стенке ковша, при ширине ковшей 320 мм и выше – две цепи.
Рис.5.3. Схемы крепления ковшей:
а – к ленте; б – к одной цепи; в – к двум цепям
Способы загрузки и разгрузки
Ковшовые элеваторы классифицируют по способу наполнения и разгрузки ковшей, типу ковшей и их расположению на тяговом элементе. От особенностей процессов наполнения ковшей зависят их форма, расположение на тяговом органе и скорость движения [1, 2].
Загрузка ковшей производится зачерпыванием груза из нижней части кожуха или засыпанием груза в ковши, разгрузка в зависимости от скорости элеватора бывает центробежной, свободной и самотечной направленной (рис. 5.4). Наполнение ковшей зачерпыванием характерно для высокоскоростных ленточных и цепных элеваторов с расставленными ковшами и применяется для мелко- и среднекусковых малоабразивных материалов, при зачерпывании которых при повышенной скорости не возникает значительных сопротивлений.
Непосредственное засыпание в ковши применяется для крупнокусковых абразивных грузов из-за возможности отрыва ковшей и больших сопротивлений движению. Непосредственная загрузка из загрузочного носка в ковши характерна для среднескоростных и тихоходных элеваторов с сомкнутым расположением ковшей.
Центробежная разгрузка характерна для быстроходных элеваторов (1–5 м/с) с расставленными ковшами для транспортирования легкосыпучих грузов. Свободная самотечная (гравитационная) разгрузка применяется для плохо сыпучих или влажных грузов у тихоходных элеваторов при скорости движения ковшей 0,4–0,8 м/с. Свободная направленная (смешанная) разгрузка используется для наклонных и вертикальных тихоходных элеваторов (ленточных и цепных) с сомкнутыми ковшами для транспортирования кусковых, абразивных или хрупких грузов.
Рис. 5.4. Схемы загрузки и разгрузки ковшовых элеваторов:
а – загрузка зачерпыванием, разгрузка под действием центробежной силы;
б – загрузка засыпанием в ковши, разгрузка самотечная направленная;
в – самотечная свободная разгрузка; г – центральная разгрузка
Определение полюсного расстояния. На насыпной груз, находящийся в ковше, при перемещении вокруг приводного барабана (звездочки) действуют сила тяжести G и центробежная сила F (рис. 5.5), а также реакции стенок ковша.
Рис. 5.5. Схема для определения полюсного расстояния ковшового элеватора
На восходящей ветви элеватора ковш движется прямолинейно и равномерно, груз в ковше находится под действием силы тяжести G, при повороте ковша вокруг оси барабана начинает действовать центробежная сила F. Равнодействующая R сил G и F при вращении ковша изменяется по величине и направлению и пересекается с вертикалью, проведенной через центр барабана О, в точке Р – эта точка называется полюсом разгрузки, а расстояние ℓп от нее до точки О – полюсным расстоянием.
Полюсное расстояние определяется по формуле
, (5.1)
где r – расстояние от центра массы насыпного груза до центра барабана, м.
При G = mg
, (5.2)
где m – масса насыпного груза;
g – ускорение свободного падения;
v – окружная скорость точки b (v = ω r).
Для определения полюсного расстояния также используют формулу
ℓп = 895 / n2 , (5.3)
где n – число оборотов барабана (звездочки), мин-1.
При равномерном вращении полюсное расстояние ℓп – величина постоянная при любом положении ковша, она зависит только от частоты вращения барабана.
С увеличением частоты вращения барабана полюсное расстояние уменьшается, центробежная сила возрастает и становится больше силы тяжести. При ℓп ≤ rб (когда полюс находится внутри окружности барабана) (рис. 5.6, в) происходит центробежная разгрузка.
При уменьшении частоты вращения барабана полюсное расстояние увеличивается. При ℓп > rб (когда полюс находится вне окружности) сила тяжести больше центробежной силы, происходит самотечная (гравитационная) разгрузка ковшей (рис. 5.6, а).
При rб < ℓп ≤ rн происходит смешанная (центробежная и гравитационная) разгрузка ковшей (рис. 5.6, б).
У тихоходных элеваторов полюсное расстояние ℓп больше радиуса rн наружных кромок ковшей, у быстроходных – меньше радиуса rб барабана.
Характер разгрузки ковшей определяется не абсолютным значением скорости их движения, а соотношением между этой скоростью и диаметром барабана, т. е. соотношением между полюсным расстоянием и радиусом барабана
Б = ℓп / rб. (5.4)
При небольшой скорости и малом диаметре барабана можно обеспечить центробежную разгрузку ковшей, и наоборот, при большой скорости и увеличенном диаметре барабана разгрузка будет самотечной.
а б в
Рис. 5.6. Схема сил, действующих при самотечной (а),
смешанной (б), центробежной (в) разгрузках
Для высокоскоростного элеватора с центробежной разгрузкой
Б ≤ 1; Dб = 2Бv2 / g ≤ 0,204v2. (5.5)
Для быстроходного элеватора с центробежной и самотечной (смешанной) разгрузкой
Б = 1–4; Dб = (0,205–0,286) v2. (5.6)
Для среднескоростного элеватора с центробежной и самотечной (смешанной) разгрузкой
Б = 1,5–3; Dб = (0,306–0,126) v2. (5.7)
Для тихоходного элеватора с самотечной разгрузкой
Б > 3; Dб ≥ 0,6 v2. (5.8)
Геометрия движения потока груза на разгрузке позволяет конструктивно определить контуры головки кожуха и шаг ковшей на тяговом органе для обеспечения равномерного потока разгружаемого груза без ударов частиц о стенки кожуха, крошения и пыления.
Нории – специальные ковшовые элеваторы для вертикального транспортирования зерна и муки на мукомольных и комбикормовых предприятиях и зернохранилищах, которые имеют специфические конструктивные особенности, их основные параметры обусловлены ГОСТ 10190-70.
Особенности расчета ковшового элеватора
Производительность ковшового элеватора
Q = 3,6 v0 υ ψ ρ / tк, (5.9)
где v0 – объем ковша, л;
tк – шаг ковшей, м.
Для глубоких и мелких расставленных ковшей tк = (2,5–3,0) h, для сомкнутых ковшей с бортовыми направляющими tк ≈ h, h – высота ковша, м.
Тип элеватора и форму ковшей выбирают по каталогу в зависимости от транспортируемого груза. Выбранные ковши проверяют по условию кусковатости
А ≥ х аmax, (5.10)
где А – высота ковша;
х – коэффициент, зависящий от типа груза: для рядовых грузов х = 2–2,5; для сортированных х = 4–4,5.
Тяговый расчет. Схема для проведения тягового расчета представлена на рис. 5.7.Тяговое усилие в набегающей на приводной барабан (звездочку) ветви
Sнб = Sн + (q0 + qг) H. (5.11)
Усилие в сбегающей с нижнего барабана (звездочки) ветви
Sн = Smin + Σ W. (5.12)
В ленточном элеваторе Smax = Sнб. В цепном элеваторе с учетом динамических нагрузок
Smax = Sнб + Sдин = Sн (q0 + qг) H + Sдин . (5.13)
Для двухцепного элеватора усилие в одной цепи
Smax = 1,15 (Sнб + Sдин) / 2. (5.14)
Минимальное натяжение цепи (ленты) предварительно принимают Smin = 5–20 кН.
Рис. 5.7. Схема для выполнения тягового расчета
вертикального ковшового элеватора
Динамическое усилие в цепи элеваторов
Sдин = 3 S υ2 / z2 tц g, (5.15)
где S – нагрузка от неравномерно движущейся ходовой части и груза, Н;
S = (2q0 + qг) H, (5.16)
где z – число зубьев звездочки, шт;
tц – шаг цепи, м.
Сопротивление движению ходовой части
Σ W = Wн + Wзач. (5.17)
Сопротивление на нижнем барабане (звездочке)
Σ Wн = Smin ω', (5.18)
где ω' – коэффициент сопротивления движению.
Сопротивление зачерпыванию
Wзач = kз qг, (5.19)
где kз = 1,25÷4,0 – коэффициент зачерпывания в зависимости от характеристики груза.
Натяжение тягового элемента в точке сбегания
Sсб = Smin + q0 H. (5.20)
Тяговое усилие на приводном валу
P = (Smax – Sсб) (1+ ω'). (5.21)
По тяговому усилию определяется мощность электродвигателя и выбирается электродвигатель по каталогу.
По рассчитанной мощности привода выбирают редуктор и вычисляют фактическую скорость рабочего органа. По тормозному моменту выбирают тормоз.
Динамический расчет заключается в определении усилий при установившемся режиме и в период пуска.
Люлечные и полочные элеваторы
Люлечные (рис 5.8) и полочные (рис. 5.9) элеваторы предназначены для перемещения штучных грузов и выполняются вертикальными и наклонными.
Рис. 5.8. Схема люлечного элеватора (одноцепного и двухцепного):
1 – привод; 2 – приводные звездочки; 3 – тяговые цепи; 4 – люльки;
5 – натяжные звездочки
Люлечные элеваторы выполняются двух- и одноцепными (с консольным расположением люлек).
Полочные элеваторы имеют жестко закрепленные консольные полки-захваты, которые выполняют в виде кронштейнов с изогнутой или плоской формой опорной поверхности. Загрузка и разгрузка полочных и люлечных элеваторов производится автоматически или вручную.
Назначение и устройство, особенности конструкции
Тяговым элементом люлечных элеваторов являются пластинчатые втулочные и катковые цепи, которые перемещаются со скоростью 0,2–0,3 м/с. Люльки закреплены шарнирно и выполняются двухпальцевыми (в двухцепных конвейерах) и однопальцевыми (в одноцепных конвейерах). Для устранения раскачивания люлек в поперечном направлении цепи снабжены ходовыми роликами и направляющими шинами.
Рис. 5.9. Схемы полочных элеваторов:
а – вертикальный; б – наклонный;
в – вертикальный с отклонением захвата на рабочей ветви
Полочный элеватор состоит из двух вертикально замкнутых цепей (пластинчатых втулочных или катковых), огибающих верхние и нижние звездочки. К цепям жестко прикреплены консольные захваты-полки, форма которых зависит от геометрической формы перемещаемых грузов. Полочные элеваторы имеют скорости движения 0,2–0,3 м/с.
Способы загрузки и разгрузки
Загрузка люлечных элеваторов производится на восходящей ветви, разгрузка – в любом месте нисходящей ветви. Ручная загрузка производится непосредственно установкой грузов на движущиеся люльки и разгрузка обеспечивается направляющими, стабилизирующими положение люльки в зоне загрузки.
Для автоматической загрузки и разгрузки люлек применяются выдвижные и поворотные колосниковые и роликовые столы. Загрузка и разгрузка полочных элеваторов производится автоматически или вручную. Наиболее удобными для автоматизации загрузки и разгрузки являются грузы цилиндрической формы, т. к. их можно перекатывать по наклонному настилу или перегружать с колосникового стола на гребенчатую полку, а затем на стол.
Рис. 5.10. Конструкция люльки (а) и полки (б);
схемы (в, г) загрузки и разгрузки полочных элеваторов:
1 – скаты; 2, 4 – бочки;3 – захват; 5 – головная звездочка;
6 – отклоняющая звездочка; 7 – полка
Используется разгрузка на восходящей ветви (рис. 5.50, г) путем отклонения полки с помощью дополнительных отклоняющих звездочек.
Захваты-полки могут снабжаться специальным поворотным приспособлением, позволяющим разгружать груз в любом месте на восходящей ветви элеватора и управляемым с помощью упоров или направляющих шин, выдвигаемых в месте разгрузки. Поворотные части захватов после разгрузки возвращаются в исходное положение с помощью пружин или направляющих шин.
Особенности расчета люлечных и полочных элеваторов
Производительность
Z = 3600 v zе / а, (5.22)
где zе – число штучных грузов на одном несущем элементе;
а – шаг несущих элементов.
Мощность привода
Р = kз Pв / η0, (5.23)
где kз = 1,05 – коэффициент запаса мощности;
Рв – мощность на валу приводного элемента;
η0 – кпд передаточного механизма.
Тяговое усилие
W0 = Pв / v. (5.24)
Максимальное натяжение цепи
Smax = W0 + Smin + W н.в., (5.25)
где W н.в. – сила сопротивления нисходящей ветви.
W н.в = q0 H (sinβ – ω cosβ), (5.26)
где q0 – распределенная масса ходовой части.
Разрывное усилие цепи
Рр = Sрасч nк cн / zк, (5.27)
где nк = 7–10 – запас прочности цепи;
cн = 1,1–1,25 – коэффициент неравномерности распределения нагрузки между параллельными ветвями цепи;
zк – число параллельных ветвей цепи.
По максимальному натяжению производится выбор цепи, определение передаточного числа и выбор редуктора, расчет тормозного момента и выбор тормоза.
Тяговый расчет выполняется методом обхода по контуру трассы. Натяжение цепи в точке набегания цепи на натяжную звездочку принимают Smin = 1000–2000 Н. Максимальное натяжение цепей в точке набегания на приводные звездочки Smax = Sнб.