Машиностроение и механика

  • Increase font size
  • Default font size
  • Decrease font size

Проектирование и эксплуатация газо- и водоочистки: продолжение - Обработка и очистка травильных сточных вод

Article Index
Проектирование и эксплуатация газо- и водоочистки: продолжение
ОЧИСТКА КОНВЕРТОРНЫХ ГАЗОВ
Трубы-распылители с высоким сопротивлением движе­ния
Трубы-распылители с небольшим сопротивлением дви­жению
Сухая очистка
Тканевые фильтры
Оборотные циклы газоочистки
Очистка сточных вод конверторного производства
Очистка сточных вод прокатного производства
Борьба с пылью в прокатном производстве
Обеспыливание выбросов машин огневой зачистки
Очистка сточных вод прокатных станов отстаиванием
Очистка сточных вод прокатного и трубопрокатного производства
Прокатные и трубопрокатные цехи
Первичные отстойники
Вторичные отстойники
Применение гидроциклонов для очистки сточных вод от прокатных и трубопрокатных станов
Охлаждение оборотной воды
Методы очистки сточных вод на промышленных предприятиях
Регенерация отработанных СОЖ
Технология очистки отработанных смазочно-охлаждающих жидкостей
Утилизация осадков сточных вод и активного ила
Обработка и очистка травильных сточных вод
Купоросная установка
All Pages
Обработка и очистка травильных сточных вод

 

  1. НАЗНАЧЕНИЕ АГРЕГАТА НЕПРЕРЫВНОГО ГОРЯЧЕГО ЦИНКОВАНИЯ

Назначение протяжных печей агрегатов горячего цинкования – термохимическая обработка холоднокатаной стальной углеродистой полосы перед горячим цинкованием и последующий низкий отпуск полосы с нанесенным слоем цинка. Предусмотрена возможность алюминирования полосы.

Протяжная печь входит в состав агрегата непрерывного горячего цинкования АГНЦ-2У цеха холодного проката. В протяжной печи предусмотрены две основные технологические операции:

1) подготовка поверхности полосы к оцинкованию при одновременном проведении отжига или нормализации для получения требуемой структуры (качества) полосы;

2) подготовка к оцинкованию полосы с уже полученной до входа в печь структурой (качеством).

При проведении первой технологической операции поступившая в печь полоса подвергается термической очистке в камере скоростного подогрева и последующему отжигу и нормализации по заданным режимам. При осуществлении второй технологической операции полоса, прошедшая перед поступлением в печь химическую очистку (обезжиривание, травление и т.д.), подвергается в протяжной печи подогреву.

ИСПОЛЬЗОВАНИЕ ВОДЫ В АГРЕГАТЕ ЦИНКОВАНИЯ

Агрегат непрерывного горячего цинкования состоит из трех частей: головная (химическая), печная и хвостовая.

Подготовка поверхности полосы перед оцинкованием производится в химическом узле агрегата, а также в камере скоростного подогрева.

Технологический процесс подготовки полосы состоит из следующих операций: химического обезжиривания в ванне замочки, щеточно-моечной обработки в ЩММ, электролитического обезжиривания поочередно в двух ваннах электролитического обезжиривания, травления, промывки в холодной и горячей воде, сушки.

Состав раствора обезжиривания ванны замочки: триполифосфат натрия – 1,5-2,0%, каустическая сода – 1-1,5%, эмульгатор – 0,1-0,3%.

Состав раствора электролитического обезжиривания: триполифосфат натрия (Nа5Р3О10) – 2,5-3,0%, каустическая сода (NаОН) – 1,0-2,0%.

Растворы в ваннах непрерывно циркулируют по системе: ванна – циркуляционный бак – насос – ванна. Полная замена обезжиривающих растворов производится 1 раз в месяц, промывная вода при накоплении щелочи подвергается немедленной замене.

Процесс травления состоит из погружения металлических изделий в ванну с травильным раствором и последующей промывки их относительно чистой водой. Промывные воды и составляют основную массу сточных вод, подлежащих обработ­ке. Кроме того, периодически в сточные воды попадают отработанные травильные растворы, подвергаемые регенерации.

В качестве травильных растворов применяют разбавленные серную и соляную кислоты или их смеси. Для травления специальных сортов стали используют азотную, фосфорную и плавиковую кислоты. В нашей стране по сложившимся традициям и условиям экономики для травле­ния применяют преимущественно техническую серную кислоту. Наиболь­шая скорость травления получается при 20-25%-ной концентрации раствора. Используют и более слабые растворы. При травлении железа серной кислотой основным продуктом химических реакций является сернокислое железо FеSО4, которое вместе с серной кислотой состав­ляет главную часть загрязнений, находящихся в растворенном состоянии в сточных водах. Однако при травлении не вся окалина переходит в раствор, некоторая ее часть разламывается и выпадает в осадок. Ока­лина, песок и прочие твердые частицы составляют нерастворимую часть загрязнений.

Обычно из травильных ванн с серной кислотой отработанный раствор сбрасывается с остаточным содержанием серной кислоты 30-70 кг/м3 и железного купороса 150-300 кг/м3. Температура сточных вод достигает 800С.

Сточные воды после промывки полосы содержат около 0,5 кг/м3 серной кислоты и железного купороса.

В протяжной печи промышленной (технической) водой охлаждаются: центральный вал печных роликов в камере скоростного подогрева, цапфы печных роликов в камерах нагрева, выдержки и ступенчатого охлаждения, цапфы нижнего поворотного ролика, носики горелок камеры скоростного подогрева, подшипники циркуляционных вентиляторов блоков струйного охлаждения, холодильники пирометров и газоанализаторов, входной затвор, дроссель-клапаны продувочных свечей в камерах скоростного подогрева и нагрева.

Для возможности визуального контроля за расходом воды на каждый охлаждаемый технической водой элемент печи, а также для контроля за состоянием этих элементов по температуре выходящей из них воды предусмотрена система водоснабжения с разрывом струи: выходящая из каждого водоохлаждаемого элемента вода открыто сливается в приемную воронку сливных трубопроводов.

Для нормальной работы печи к качеству подводимой воды предъявляются следующие требования:

- содержание взвешенных частиц и загрязнений не более 40 мг/л;

- недопустимо обрастание охлаждаемых элементов микро- организмами;

- недопустимо выпадение солей жесткости при нагреве до 500С;

- температура подводимой к печи воды не более 350С.

Для охлаждения защитного газа в теплообменники блоков струйного охлаждения подведена химочищенная вода, циркулирующая в замкнутом контуре с аппаратами воздушного охлаждения. Расход химочищенной воды на один теплообменник составляет 15м3/ч. общий расход - 150 м3/ч.

Для окончательного охлаждения полосы после прохождения ее ванны с цинком используется замочка в ванне с холодной водой. Для замочки необходимо применять мягкую воду, не оставляющую солевого осадка на полосе – конденсат с солесодержанием не более 100 мг/л и жесткостью не более 3 мг-экв/л.

3. ВОДООЧИСТКА

Согласно действующим нормативным документам, сброс сточных вод в городские канализационные сети и в открытые водоемы допустим только в случаях, если они характеризуются величиной рН = 6,5—8,5.

В том случае, когда рН сточных вод соответствует кислой (рН 8,5) реакции, сточные воды подлежат нейтрализации, под которой понимают снижение концентрации в них свободных Н+- или ОН--ионов до установления рН в интервале 6,5-8,5.

Высокая концентрация Н+-ионов в сточных водах обусловлена наличием в них свободных минеральных (серная, соляная, азотная, фосфорная, плавиковая) кислот и в значительно меньшей степени — органических. Нейтрализация достигается добавками различных растворимых в воде щелочных реагентов (окись кальция, гидроокиси натрия, кальция, магния, карбонат натрия).

Реакция нейтрализации идет по схеме:
Н++ОН- →Н2О.

Промывные воды. Для нейтрализации кислых сточных вод можно применять следующие щелочные реагенты: окись кальция (негашеная известь), гидроокись кальция (гашеная известь), едкий натр, карбонат кальция (известняк, мел, мрамор), карбонат магния (магнезит), карбонат натрия (кальцинированная сода), карбонат магния – кальция (доломит).

При нейтрализации известью сточных вод, содержащих свободную серную кислоту и ее соли, образуется сульфат кальция, который при достижении определенной концентрации выпадает в осадок. Присутствующий в известковом молоке шлам способствует коагуляции частиц гидроокисей металлов и других нерастворимых примесей. Раствори­мость осадка зависит от его структуры, которая в свою очередь опреде­ляется условиями проведения процесса нейтрализации. Растворимость сульфата кальция при 20°С составляет — 2 г/л.

При нейтрализации избыточной кислотности величина рН сточных вод повышается, что сопровождается образованием и осаждением основных солей.

Выделение углекислого газа при нейтрализации свободных кислот приводит к флотационно­му эффекту: пузырьки углекислого газа, обволакивая частицы осадка, поднимают их вверх, способствуя всплыванию части осадка в отстойниках.

Осадки, образующиеся при обработке сточных вод содой, уплотняются значительно хуже, чем осадки, образующиеся при обработке сточных вод известью, так как флокулирующие свойства соды выражены значи­тельно слабее. Однако к основным недостаткам соды и едкого натра как реагентов следует отнести их высокую стоимость и дефицитности.

Для нейтрализации кислых сточных вод и осаждения из них ионов тяжелых металлов могут быть успешно использованы некоторые производственные отходы - карбидный шлам, феррохромовый шлак и др.

Время осветления нейтрализованной воды составляет обычно 40 мин, объем осадка - 10% объема жидкости.

Для нейтрализации кислых сточных вод возможно использование отходов металлургической промышленности - феррохромового шлака, шлака электросталеплавильных печей и отходов обжига известняка-пыленки.

Нейтрализация сточных вод твердыми производственными отходами позволяет сократить объем образующегося осадка в 2-6 раз и умень­шить его влажность с 98-99 до 76-65%. Для нейтрализации кислых сточных вод можно использовать также стоки гидрозолоудаления ТЭЦ.

Количество промывных вод значительно, и в зависимости от вида обрабатываемых изделий оно изменяется в широких пределах, например, на 1 т изделий образуется следующее количество сточных вод, м3:

Листовая сталь……………2,5-8,5

Стальные трубы…………..2-30

Стальные прутки…….……0,4

Промывные воды содержат 0,5-5,0 г/л кислоты, 0,5-8,0 г/л солей железа и до 300 мг/л взвешенных частиц (окалина, песок и другие примеси).

Таким образом, на практике наблюдаются разнообразные концентрации загрязнений в травильных сточных водах, подверженные резким колебаниям не только в течение суток, но и одного часа. Эти колебания концентраций, главным образом, и вызывают необходимость применения систем автоматического регулирования процесса обработки травильных сточных вод.

В результате обследования очистных сооружений ряда предприятий металлургической промышленности были получены следующие данные о составе промывных травильных сточных вод.

clip_image157Кроме указанных загрязнений, травильные сточные воды содержат соответственно 5-25 н 50-200 мг-экв/л хлоридов и сульфатов.

Для получения данных о характере колебаний концентраций загрязнений во времени необходимо проводить длительные наблюдения.

Необходимо отметить, что расход сточной воды также не остается постоянным, но колебания его по сравнению с колебаниями концентраций загрязнений сравнительно невелики. Резкие изменения расхода связаны с аварийным состоянием технологического оборудования и случаются сравнительно редко.

Отработанные растворы. Отработанные растворы, образующиеся при травлении стальных из­делий, в растворах минеральных кислот (серная, соляная, азотная, плавиковая и др.) на предприятиях черной металлургии содержат свободные минеральные кислоты, соли железа и других металлов в концентрациях, в сотни и тысячи раз превышающих концентрации этих веществ в обыч­ных малоконцентрированных (промывных) сточных водах. Эти раство­ры либо обезвреживают (нейтрализуют) с помощью щелочных реаген­тов (обычно в смеси с промывными сточными водами), либо перера­батывают, используя различные физико-химические способы с целью регенерации (утилизации) содержащихся в них ценных продуктов

Многократно использованные травильные растворы обогащаются солями железа и выводятся из производства. Отработавшие травильные растворы обрабатывают на купоросных установках, где регенерируется серная кислота и навлекается железный купорос. При других способах регенерации из травильных растворов получают хлористое или электро­литическое железо.