Машиностроение и механика

  • Increase font size
  • Default font size
  • Decrease font size

Проектирование и эксплуатация газо- и водоочистки: продолжение - ОЧИСТКА КОНВЕРТОРНЫХ ГАЗОВ

Article Index
Проектирование и эксплуатация газо- и водоочистки: продолжение
ОЧИСТКА КОНВЕРТОРНЫХ ГАЗОВ
Трубы-распылители с высоким сопротивлением движе­ния
Трубы-распылители с небольшим сопротивлением дви­жению
Сухая очистка
Тканевые фильтры
Оборотные циклы газоочистки
Очистка сточных вод конверторного производства
Очистка сточных вод прокатного производства
Борьба с пылью в прокатном производстве
Обеспыливание выбросов машин огневой зачистки
Очистка сточных вод прокатных станов отстаиванием
Очистка сточных вод прокатного и трубопрокатного производства
Прокатные и трубопрокатные цехи
Первичные отстойники
Вторичные отстойники
Применение гидроциклонов для очистки сточных вод от прокатных и трубопрокатных станов
Охлаждение оборотной воды
Методы очистки сточных вод на промышленных предприятиях
Регенерация отработанных СОЖ
Технология очистки отработанных смазочно-охлаждающих жидкостей
Утилизация осадков сточных вод и активного ила
Обработка и очистка травильных сточных вод
Купоросная установка
All Pages
ОЧИСТКА КОНВЕРТОРНЫХ ГАЗОВ

Запыленность конверторных газов в сильной степе­ни зависит от показателей кислородной продувки, а так­же от схемы подачи и качества (гранулометрического состава, влажности) извести и других сыпучих, вводи­мых в конвертор против потока газов и уносимых последним; содержание пыли в газе достигает 250 г/м3 Многочисленные замеры показывают, что повышение ин- тенсивности кислородной продувки не дает существен­ного повышения запыленности газов; на некоторых установках суммарный вынос пыли даже уменьшается (в процентах к массе садки). При этом вследствие ин­тенсификации всегда возрастает количество пыли, про­носимой газами в единицу времени, через Газоотводящий тракт, в результате чего возрастает нагрузка на газоочистную установку.

Способ отвода газов от конверторов (с доступом или без доступа воздуха в газовый поток), а также способ охлаждения газов (поверхностный или впрыскиваемой водой) определяют количество и состав газов и их продуктов сгорания, входящих в газоочистительный аппарат, % также гранулометрический состав пыли, со­держание пыли на 1 м3 газов, степень насыщения вла­гой, состав газов.

Газоочистная установка должна обеспечивать очистку газов от пыли до санитарных норм при любом спо­собе отвода и охлаждения газов. Санитарные нормы запыленности газов, выбрасываемых в атмосферу, из го­да в год ужесточаются. Содержание пыли в газах, вы­брасываемых в атмосферу, не должно превышать 100 мг/м3 (в среднем за период кислородной продувки). В ближайшие годы следует ожидать, что с ростом ин­тенсивности работы основных технологических агрегатов металлургических предприятий величина остаточной запыленности будет снижена, по крайней мере, до 80 мг/м3.

Изложенные условия определяют величину коэффи­циента улавливания пыли в системах газоочистки, т. е. по мере снижения допустимой остаточной запыленности должен повышаться коэффициент улавливания пыли в газоочистке.

Коэффициент улавливания определяли, как отноше­ние массы уловленной пыли к массе пыли, вносимой в газоочистку.

Запыленность газов, их состав, требуемая степень очистки в аппаратах указывают, что при переходе от системы отвода с полным сжиганием газов к системам без дожигания запыленность газа, входящего в газо­очистку, возрастает. В то же время при верхней кисло­родной продувке пыль более крупная, легче отделяется, при донном дутье — более мелкая, и ее отделение ус­ложняется.

Все многочисленные способы очистки газов можно разделить на две основные группы: мокрую и сухую очистку. Для мокрой очистки используют скрубберы, различной конструкции, дезинтеграторы, трубы Вентури (именуемые также трубами-распылителями) различных модификаций, размеров и конструкций. К этому же классу относят и мокрые электрофильтры.

Принципиально для всех аппаратов мокрой очистки характерны смачивание газа и следовательно, находящейся в нем пыли, коагулирование частиц пыли и уда­ление их из потока газов. Поэтому в аппаратах мокрой очистки устанавливают, как правило, сепараторы, влаго-отделители, циклоны или ловушки различных конст­рукций, назначение которых улавливать выносимые из основного потока смоченные и скоагулированные части­цы пыли. Неотъемлемой частью мокрых газоочисток является водное хозяйство. Весьма часто качество очист­ки определяется не собственно конструкцией аппаратов, а качеством воды (содержанием твердых частиц, водо­родным показателем и др.), поступающей на газоочист­ку. По соображениям охраны окружающей среды не до­пускаются работа мокрых очисток по разомкнутому циклу, и даже эпизодический сброс воды из оборотных циклов в водоемы.

Для аппаратов сухой очистки характерно удаление пыли без смачивания, например коагуляция частиц в электрофильтрах вследствие зарядки их частиц в элек­трическом поле в результате адсорбции ионов поверх­ностью частиц в поле коронного разряда, в активной зоне рукавных фильтров за счет статического электри­чества, а на самой ткани в результате автофильтрации.

Один и тот же газоочистной аппарат работает на разных предприятиях даже за одинаковыми технологи­­­ческими агрегатами, в разных условиях: различны запыленность газа, состав, температура и др. Результаты расчета аппаратов очистки газа большей частью не под­­тверждаются достигаемыми на практике результатами. Поэтому наиболее правильным подходом при опреде­лении габаритов и выборе типа аппаратов для очистки газов от пыли является аналогия с действующей или моделирование на экспериментальной установке с вне­сением коррективов, основанных на опыте ее эксплуа­тации, особенностях технологии и новых исследова­ниях.

Многочисленные технико-экономические расчеты по­казывают, что в принципе нельзя отдать предпочтение сухой электростатической или мокрой очистке газа. Вместе с тем следует отметить, что в отдель­ных конкретных условиях в зависимости от эксплуата­ционных показателей (заработной платы, стоимости электроэнергии, наличия водных ресурсов, возможности использования шлама, стоимости оборудования), а также способа отвода и охлаждения газов может оказаться целесообразным применять либо мокрый, либо сухой способ очистки газов.

Сухие газоочистки имеют следующие преимущества:

1) не требуется в большом количестве вода, что поз­воляет обойтись без сопутствующих хозяйств — грязно­го оборотного цикла, установок по стабилизации воды, устройств для дегазации воды (от окиси углерода) и т. д.;

2) сокращается неизбежный выброс окиси углерода в атмосферу, так как зажигание свечи при сухом газе с температурой 150—200 СС обеспечивается уже при 12—18% СО, тогда как газы, насыщенные влагой и имеющие температуру 40—50 °С, загораются только при 22—30% СО;

3) увеличивается период использования газа как топлива;

4) значительно сокращается расход электроэнергии на отсос газов.

Несмотря на эти преимущества сухих фильтров, при современном уровне конверторного производства не исключены технологические неполадки, при которых мо­жет образоваться взрывоопасная смесь. Электрофильтр является запалом для такой смеси. Тканевые же фильт­ры сложны, громоздки и не обеспечивают необходимой газоплотности. Именно по этим причинам в настоящее время отдают предпочтение мокрой очистке. В мировой практике большее распространение получили мокрые системы очистки (80%) и только в США при отводе газов с а>1 сухие электростатические (примерно половина газоочисток). Тканевых газоочисток на конец 1978 г. работало только семь.

I. Мокрая очистка

В мокрых газоочистках основным элементом явля­ются трубы-распылители (трубы Вентури); работает несколько установок и с мокрыми электрофильтрами. Газоочистки, включающие трубы-распылители, можно подразделить на две группы, отличающиеся принципом работы: трубы-распылители с высоким гидравлическим сопротивлением и с низким гидравлическим сопротив­лением и использованием эффекта конденсации.

Условно будем считать, что сопротивление газоочист­ки менее 5000 Па является низким, а более 8000 - 10 000 Па высоким. Температура газов, входящих в трубы-распылители с высоким сопротивлением, не пре­вышает 300 - 400 °С, а в трубы, использующие эффект конденсации, равна температуре насыщения (70 - 90 °С). Поэтому в зависимости от температуры газов после ох­ладителя перед трубами-распылителями размещают скруббер или другие устройства, в которых происходит

охлаждение газов до указанных температур. Вслед за трубами-распылителями в тракт включаются сепарато­ры (циклоны или другие влагоотделители). Таким об­разом, мокрая газоочистка является многоступенчатой: как минимум двухступенчатой (труба-распылитель и влагоотделитель); большей частью - трехступенчатой (циклон, труба-распылитель и влагоотделитель); иног­да пятиступенчатой (труба-распылитель большого раз­мера с малой скоростью газа, сепаратор, труба-распы­литель с высокой скоростью газа, сепаратор, влагоотде­литель). Ведутся эксперименты по созданию более про­стых и эффективных газоочисток.