Машиностроение и механика

  • Increase font size
  • Default font size
  • Decrease font size

Проектирование сварных конструкций: прочность, материалы, строение сварного соединения - Цветные металлы

Article Index
Проектирование сварных конструкций: прочность, материалы, строение сварного соединения
Расчетная и конструкционная прочность
Жесткость и устойчивость деталей
Расчет строительных конструкций по методу Предельных состояний
Метод расчета по предельным состояниям
Обозначение на чертежах швов сварных соединений
Материалы сварных конструкций
Измерение твердости
Испытания на ударный изгиб
Правила нанесения показателей свойств материалов
Стали. Классификация. Маркировка
Углеродистые стали
Низколегированные стали
Цветные металлы
Сварочные материалы
Строение сварного соединения
Растяжение поперек шва
Растяжение вдоль шва
Механические свойства металла сварных соединений
All Pages
Цветные металлы


В некоторых отраслях промышленности наряду с применением стали получили распространение цветные сплавы: в авиации, судостроении, строительстве. Сплавы на основе алюминия и титана обладают значительно меньшей плотностью по сравнению со сталями, хорошо сохраняют свои свойства при работе в условиях низких температурах. Они обладают более высокой коррозионной стойкостью и обеспечивают экономию массы по сравнению с рядом других применяемых материалов. С другой стороны, цветные сплавы имеют в несколько раз меньший, чем сталь, модуль упругости, что снижает устойчивость элементов конструкций, увеличивает их деформируемость.

По сравнению со сталями обыкновенного качества цветные сплавы обладают повышенной чувствительностью к концентраторам напряжений. Это повышает требования к качеству обработки изделий и особенно к качеству сварочных работ.

Алюминевые сплавы

По масштабам применения в народном хозяйстве алюминий занимает среди металлов второе место после железа.

Механические свойства отожженного алюминия высокой чистоты: clip_image236 МПа; clip_image238МПа; clip_image240

Механические свойства отожженного алюминия технической чистоты: clip_image242 МПа; clip_image244МПа; clip_image246

Холодная пластическая деформация повышает предел прочности технического алюминия до 150 МПа, но относительное удлинение снижается до 6 %.

Модуль упругости алюминия 71000 МПа.

Втрое меньший чем у стали модуль уругости обуславливает малую жесткость конструкций изготовленных из алюминия и его сплавов. Прочность чистого алюминия также низка, однако она может быть существенно увеличена путем легирования.

Алюминиевые сплавы представляют собой двойные, тройные и более сложные системы с различной растворимостью компонентов в твердом состоянии. Для упрощения маркировки в обозначении некоторых сплавов, кроме алюминия, с помощью букв отражается еще один элемент (основной компонент), а цифрами - его процентное содержание;

· АМц - алюминиево-марганцевый сплав.

· АМг - алюминиево-магниевый.

· АВ - алюминиево-кремниевый (авиаль).

· Д - дуралюмин.

· В - высокопрочный сплав.

В маркировке сплавов после цифр могут быть еще буквы, которые обозначают состояние поставки проката или листа, то есть вид механической или термической обработки металла. Буквенные обозначения механической и термической обработки алюминиевых сплавов (состояние поставки):

· П - полунагартованные.

· Н - нагартованные.

· М - отожженные.

· Т - закаленные и естественно состаренные.

· TI - закаленные и искусственно состаренные.

Алюминиевые сплавы различают двух видов: литейные, которые применяются в виде отливок, в основном, в машиностроении, и так называемые деформируемые, из которых путем пластических деформаций изготовляются различные профили и листы, применяемые в строительстве и в других отраслях народного хозяйства.

Деформируемые сплавы разделяют на две группы: термически необрабатываемые и термически обрабатываемые.

Общими свойствами группы термически необрабатываемых сплавов являются: невысокая прочность и хорошая свариваемость. Для повышения прочности листов, изготовляемых из сплавов этой группы, применяется полунагартовка.

Термически неупрочняемые алюминиевые сплавы:

а) Алюминиево-марганцевый сплав АМц.

Содержит 1-1,6%. марганца. Сплав имеет низкий предел прочности - 110-170 МПа. Сваривается. Как правило, используется для ограждающих конструкций.

б) Алюминиево-магниевый сплав АМг-6Т.

По стойкости против коррозии алюминиево-магниевые сплавы занимают первое место после технически чистого алюминия. Хорошо свариваются. Применяются для листовых и для сварных стержневых конструкций.

Наибольшее распространение из алюминиево-магниевых сплавов получил в строительстве сплав АМг-6Т, который содержит около 6% магния и до 0,2% титана (что в марке сплава обозначено буквой Т).

Предел прочности АМг-6Т -320 МПа и относительное удлинение- 15%.

Наиболее качественные сварные соединения алюминия и его сплавов получают при контактной сварке и электродуговой сварке в среде аргона.

Одно из наиболее ценных качеств алюминиевых сплавов - это их относительно малый собственный вес при высокой прочности. Объемный вес сплавов АМг, АМц, АВ-2700 кг/м3, дуралюмина - 2800 кг/м3, то есть вес сплавов почти в три раза (в 2,7-2,9 раза) меньше веса сталей.

В качестве характеристики прочности материала с учетом собственного веса принято оценивать по такому показателю как удельная прочность. Удельная прочность предсталяет собой обношение расчетного сопротивления к объемному весу. Физически, это отношение показывает высоту столба постоянного сечения, в основании которого напряжения от собственного веса равны расчетному сопротивлению. Удельная прочность высокопрочных алюминиевых сталей в несколько раз выше чем у обыкновенных сталей.

Более широкому применению алюминиевых сплавов при изготовлении сварных конструкций препятствуют малая жесткость сплавов алюминия, достаточно сложная технология сварки и разупрочнение сварных соединении нагартованного металла.

Титановые сплавы

Сварные конструкции и изделия из титана и его сплавов находят применение не только в военной промышленности и новых отраслях техники, но во многих областях машиностроения и строительства.

В связи с более высокой удельной прочностью и жесткостью титан и его сплавы имеют неоспоримые преимущества перед алюминиевыми и магниевыми сплавами, особенно для сварных конструкций, работающих при 150—200°С, т. е. у верхнего предела рабочего интервала температур для алюминиевых и магниевых сплавов. В тех случаях, когда сопротивление коррозии играет важную роль, сплавы металлов алюминия и магния выгодно заменять титаном и его сплавами также и в сварных конструкциях, работающих при комнатной температуре. Сочетание высокой удельной прочности с относительно высокой теплоустойчивостью позволит в дальнейшем еще более широко использовать титан и его сплавы вместо аустенитных сталей в сварных конструкциях, предназначенных для эксплуатации при температурах до 500°.

Первое применение сварные конструкции из титана нашли в оборонной технике: авиации, ракетостроении, судостроении, танкостроении, стрелковом и артиллерийском вооружении. В настоящее время титан и его сплавы начинают все более широко использоваться также и в других отраслях, например, в гражданской авиации, атомном, энергетическом, химическом, нефтяном и транспортном машиностроении.

Технический титан имеет clip_image248 МПа; clip_image250МПа; clip_image252, clip_image254, E = 140000 МПа.

Легирование существенно меняет механические характеристики титана. При этом, меняется и фазовый состав сплавов.

По структуре различают однофазные и двухфазные титановые сплавы – α, α+β, β. Однофазные упрочняются механически, двухфазные упрочняются термообработкой.

α: ВТ1-0, ОТ4, ВТ5.

α+β: ВТ4, ВТ6, ВТ14, ВТ22, ВТ8

β: ВТ15, ТС-6.

Β сплавы отдичаются низкой свариваемостью, поэтому в сварных конструкциях используются в основном α и α+β сплавы.

Титановые сплавы обладают высокой коррозионной стойкостью, удельной прочностью.

Однако титановые сплавы имеют склонность к замедленному разрушению, без тщательной подготовки свариваемых кромок и качественной защиты сварные конструкции разрушаются и без нагрузки.