ДИАГРАММА СОСТОЯНИЯ СИСТЕМЫ ЖЕЛЕЗО – УГЛЕРОД
Основные свойства железа
Чистое железо – металл серебристо-белого цвета, весьма пластичный. Железо образует несколько окислов: FeO, Fe2O3, Fe3O4. Температура плавления Тпл=1539 °С, кипения – Ткип=2450 °С. Свойства железа в значительной степени зависят от содержания углерода, в меньшей – от других компонентов, концентрация которых ниже (Si, Mn, P, S и др.).
Для железа характерно явление полиморфизма (аллотропии), при котором твердые вещества могут изменять тип кристаллической решетки и свойства под воздействием внешних факторов (температура, давление и т.д.) Железо имеет 4 полиморфные модификации: a-, b-, g- и d-Fe. Кристаллическая решетка a-, b- и d-Fe – ОЦК с разными межатомными расстояниями, g-Fe – ГЦК. Модификации a- и g-Fe способны образовывать твердые растворы с углеродом. Другими примерами веществ, обладающих аллотропными модификациями структуры и свойств, являются: углерод (алмаз и графит); двуокись кремния (a- и b-кварц, тридимит, кристобалит, стишовит, коэсит); серое и белое олово.
Полиморфные превращения являются обратимыми, в процессе выделяется скрытая теплота кристаллизации (если превращение идет при охлаждении). На кривой охлаждения появляются критические точки и горизонтальные участки, соответствующие процессам перекристаллизации.
На рис. 3.11 приведена кривая охлаждения железа из расплавленного состояния, на которой горизонтальными участками отделены температурные интервалы существования различных модификаций железа.
Рис. 3.11. Кривая охлаждения железа
При переходе b-Fe в a-Fe тип кристаллической решетки сохраняется, но меняются физические свойства: железо из парамагнитного состояния переходит в ферромагнитное, т.е. при температуре ниже 768 °С становятся возможными спонтанная намагниченность материала и его доменная структура.
К железоуглеродистым сплавам относят стали и чугуны. Основными элементами, от которых зависят структура и свойства сталей и чугунов, являются железо и углерод.
Железо с углеродом образует твердые растворы внедрения и химическое соединение; a–железо растворяет очень мало углерода (до 0,02 % при 727 °С). Твердый раствор углерода и других элементов в a-железе называется ферритом. Феррит имеет низкую твердость и прочность: НВ 80; sB=250 МПа (25 кгс/мм2) и высокую пластичность (Q=50 %). g-железо растворяет значительно большее количество углерода – до 2,14 % при 1147 °С. Твердый раствор углерода и других элементов в g-железе называется аустенитом. В железоуглеродистых сплавах он может существовать только при высоких температурах. Аустенит пластичен, твердость его НВ 160–200, Q=40¸50 %.
Железо с углеродом также образует химическое соединение Fe3C, называемое цементитом или карбидом железа. В цементите содержится 6,67 % С; он имеет высокую твердость (~НВ 800), но чрезвычайно низкую, практически нулевую пластичность.
Диаграмма состояния железо – цементит(Fe – Fe3C)
Диаграмма состояния Fe – Fe3C (в упрощенном виде) приведена на рис. 3.12. На этой диаграмме точка А (1539 °С) соответствует температуре плавления (затвердевания) железа, а точка D (~1600 °С) – температуре плавления (затвердевания) цементита. Линия ACD – линия ликвидуса, показывающая температуры начала затвердевания (конца плавления) сталей и чугунов. Линия AECF – линия солидуса, показывающая температуры конца затвердевания (начала плавления).
Рис. 3.12. Диаграмма состояния Fe – Fe3C (в упрощенном виде)
По линии ликвидуса АС (при температурах, соответствующих линии АС) из жидкого сплава кристаллизуется аустенит, а по линии ликвидуса CD – цементит, называемый первичным цементитом.
В точке С при 1147 °С и содержании 4,3 % С из жидкого сплава одновременно кристаллизуются аустенит и цементит первичный, образуя эвтектику, называемую ледебуритом. По линии солидуса АЕ сплавы с содержанием до 2,14 % С окончательно затвердевают с образованием аустенита. По линии солидуса ЕС (1147 °С) сплавы с содержанием 2,14–4,3 % С окончательно затвердевают с образованием эвтектики ледебурита. Так как при более высоких температурах из жидкого сплава выделяется аустенит, следовательно, такие сплавы после затвердевания имеют структуру аустенит+ледебурит. По линии солидуса CF (1147 °С) сплавы с содержанием 4,3–6,67 % С окончательно затвердевают также с образованием эвтектики ледебурита. Так как при более высоких температурах из жидкого сплава выделяется цементит (первичный), следовательно, такие сплавы после затвердевания имеют структуру – первичный цементит+ледебурит.
В результате первичной кристаллизации во всех сплавах с содержанием до 2,14 % С образуется однофазная структура – аустенит. Сплавы железа с углеродом, в которых в результате первичной кристаллизации в равновесных условиях получается аустенитная структура, называют сталями. Следовательно, сталь – это железоуглеродистые сплавы с содержанием до 2,14 % С. Сплавы с содержанием более 2,14 % С, в которых при кристаллизации образуется ледебурит, называют чугунами. Следовательно, чугун – это железоуглеродистые сплавы с содержанием более 2,14 % С. Излом таких чугунов светлый, блестящий (белый излом), поэтому такие чугуны называют белыми.
В железоуглеродистых сплавах превращения в твердом состоянии характеризуют линии GSE, PSK, PQ. Линия GS показывает начало превращения аустенита в феррит (при охлаждении). Критические точки, лежащие на линии GS, обозначают А3 (при нагреве Аc3, а при охлаждении Аr3). Линия SE показывает, что с понижением температуры растворимость углерода в аустените уменьшается. Так, при 1147 °С в аустените может раствориться 2,14 % С, а при 727 °С – 0,8 % С. С понижением температуры из аустенита выделяется избыточный углерод в виде цементита, называемого вторичным. Критические точки, лежащие на линии SE, обозначают Аст. В чугунах с содержанием 2,14–4,3 % С при 1147 °С, кроме ледебурита, есть аустенит, из которого при понижении температуры тоже выделяется вторичный цементит.
Линия PSK (727 °С) – линия эвтектоидного превращения. На этой линии во всех железоуглеродистых сплавах аустенит распадается, образуя структуру, представляющую собой механическую смесь феррита и цементита и называемую перлитом (~НВ 200). Критические точки, лежащие на линии PSK, обозначают А1 (при нагреве Ас1, а при охлаждении Ar1).
Линия PQ показывает, что с понижением температуры растворимость углерода в феррите уменьшается от 0,02 % при 727 °С до 0,006 % при комнатной температуре. При охлаждении ниже 727 °С из феррита выделяется избыточный углерод в виде цементита, называемого третичным.
Ниже 727 °С железоуглеродистые сплавы имеют следующие структуры.
Стали, содержащие менее 0,8 % С – феррит+перлит, называют доэвтектоидными сталями (рис. 3.13, а).
Стали с содержанием 0,8 % С – перлит, называют эвтектоидными сталями (рис. 3.13, б).
Стали с содержанием 0,8–2,14 % С – перлит и цементит (вторичный), называют заэвтектоидными сталями (рис. 3.13, в).
В рассмотренных выше сплавах, таким образом, имеются 3 твердые фазы – феррит, цементит и аустенит и эти же фазы в структурно связанном состоянии: эвтектоид – перлит и эвтектика – ледебурит.
В сплавах железо – углерод при распаде аустенита взможна кристаллизация углерода в свободном состоянии в виде графита.
Рис. 3.13. Микроструктура стали [7]: а – доэвтектоидная сталь – феррит (светлые участки) и перлит (темные участки), ´500; б – эвтектоидная сталь – перлит, ´ 1000; в – заэвтектоидная сталь – перлит и цементит (в виде сетки), ´ 200
Графит является неметаллической фазой, он мягок и обладает низкой пластичностью, располагается в основной массе сплава, имеет развитую объемную форму в виде пластинок.
Диаграмма состояния системы железо – цементит используется на практике для определения видов и режимов термической обработки стали с целью придания сплаву необходимых свойств.