Машиностроение и механика

  • Increase font size
  • Default font size
  • Decrease font size

Металлургические печи: материалы печей, утилизация теплоты дымовых газов, система охлаждения - Факельное сжигание

Article Index
Металлургические печи: материалы печей, утилизация теплоты дымовых газов, система охлаждения
Классификация огнеупоров и теплоизоляционных материалов
Теплотехнические характеристики огнеупорных и теплоизоляционных материалов
Теплотехнические характеристики теплоизоляционных материалов
Кладка печи. Конструкции сводов
Стены и свод печи
Теплотехнические принципы расчетов горелочных устройств
Факельное сжигание
Длина факела
Факторы, влияющие на длину факела. Калибр горелки
Устройства для сжигания газообразного и жидкого топлива
Форсунки для сжигания мазута
Новое поколение горелок
Утилизация теплоты дымовых газов
Вторичные материальные и энергетические ресурсы
Направления снижения удельного расхода топлива в печах
Система испарительного охлаждения печей
Водяное охлаждение
Испарительное охлаждение
Рекуператоры металлургических печей
Теплообмен и температурные поля в рекуператорах
Промышленные рекуператоры
Регенераторы металлургических печей
Конструкции регенераторов. Насадка регенераторов
All Pages

Факельное сжигание


clip_image015

Рис. 2.1 – Фотография ламинарного факела

Различают ламинарный и турбулентный факел. При ламинарном факеле контакт горючего с кислородом воздуха происходит на поверхности струи. Внутренние слои газа не соприкасаются с кислородом, что хорошо видно на рис. 2.1 (темная полоска первичного газа охвачена светлой оболочкой горящего слоя). В ламинарном факеле по его сечению можно выделить две зоны: зону горючего газа и зону продуктов сгорания. На границе зон происходит горение топлива. Таким образом, имеет место послойное включение слоев газа в процесс горения. Фронт горения постепенно приближается к оси струи.

При турбулентном факеле отсутствует послойное выгорание газа в струе. Внешний вид и структура факела определяется свойством турбулентной струи захватывать окружающую среду, перемешиваться с этой средой и проталкивать ее вперед. Поэтому турбулентная струя газа после вылета из сопла горелки – устройств для сжигания газообразного топлива – приобретает форму конуса. По своей структуре турбулентная струя представляет совокупность хаотично перемещающихся макрочастиц, объединенных в одно целое силами вязкости и общим направлением движения.

При поджигании турбулентной струи горючего газа процесс горения начинается на поверхности струи. Образующиеся здесь продукты сгорания вовлекают в свое движение макрочастицы воздуха и вместе с ними проникают вглубь струи. Таким путем постепенно очаги горения возникают и внутри струи. Процесс горения из поверхностного превращается в объемный. Вследствие хаотичности турбулентного перемешивания очаги горения в каждом элементарном объеме факела возникают дискретно. Они то появляются, то исчезают. При зрительном восприятии большого числа близко расположенных и дискретно появляющихся очагов горения в объеме факела они сливаются воедино и турбулентный факел представляется в виде сплошной конусной струи горящего газа.

Для уяснения динамики перехода ламинарного факела в турбулентный рассмотрим изменение длины вертикального факела при возрастании скорости в сопле (рис. 2.2). С ростом скорости истечения длина ламинарного факела сначала возрастает почти пропорционально скорости истечения Wист, а факел имеет неизменную форму.

clip_image017

Рис. 2.2 – Фотографии факелов при переходе от ламинарного факела к турбулентному при возрастании скорости


clip_image019

Рис. 2.3 – Изменение длины факела при возрастании скорости

При достижении критической скорости Wкр вершина факела становится неустойчивой и начинает пульсировать. При дальнейшем увеличении скорости эта неустойчивость развивается и факел как бы складывается из двух частей: нижней ламинарной и верхней турбулентной, что видно из фотографии, приведенной на рис. 2.2. При еще большем увеличении скорости истечения длина факела начинает уменьшаться и граница раздела частей факела перемещается от вершины к соплу. При некотором значении скорости факел становится полностью турбулентным и дальнейшее увеличение вызывает противоположное явление – длина факела вновь начинает увеличиваться, но уже в более медленном темпе, чем при ламинарном режиме (рис. 2.3).

Значения критерия Рейнольдса, при котором начинается переход от ламинарного факела к турбулентному, зависит от природы газа и диаметра сопла. При увеличении диаметра сопла кривая Lфак = f(Wист) постепенно теряет максимум, вырождаясь в плавную кривую (пунктирная кривая на рис. 2.3). Хорошо развитый турбулентный факел имеет место при Reкр > 8000-10000. Для водорода Reкр = 3000.