Основное количество пылегазовых выбросов в коксохимическом производстве образуется коксовыми печами. При загрузке холодной шихты в нагретую до высокой температуре печь интенсивно выделяются влага, угольная пыль и газообразные продукты. По мере повышения температуры из угля выделяются пирогенетическая влага и летучие вещества. При завершении коксования образуется примерно 73—75% твердого остатка (кокса) и до 25% летучих веществ, в том числе сернистые и азотистые соединения, непредельные и ароматические углеводороды, аммиак, цианистый водород и другие химические вещества.
Количество серы, содержащейся в идущих на коксование углях, колеблется от 0,5 до 4%.
Содержание серы в коксе в определенной мере влияет на загрязнение окружающей среды, так как при выплавке чугуна часть ее переходит из кокса в доменный газ, используемый в качестве энергетического топлива. Поэтому обогащение углей в значительной степени способствует снижению сернистости шихты, а ограничение содержания серы в коксе имеет не только технологическое значение, но и способствует уменьшению загрязнения окружающей среды. В настоящее время установлены ограничения по содержанию серы в коксе: для донецких углей 1,7—2, кузнецких 0,5, карагандинских 0,8%.
При коксовании азотсодержащие соединения из угля переходят в газ и образуют ряд химических продуктов: аммиак, синильную кислоту, МОХ, пиридин, хинолин и другие соединения, которые также загрязняют окружающую среду.
К вредным химическим примесям коксохимического производства, обладающим канцерогенными свойствами, относятся ароматические полициклические углеводороды типа бенз[а]пирена (БП), бенз[а]антрацена, дибенз[а]антрацена и др. Например, в каменноугольной смоле содержится канцерогенных углеводородов от 0,16 до 1%, а в пековых дистиллятах от 0.14 до 0,84 и достигает иногда 2,2%. Приведенные в литературных источниках данные о содержании канцерогенных полициклических ароматических углеводородов (ПАУ) в продуктах пиролиза углей изменяются в зависимости от технологических и других факторов.
Бенз[а]пирен хорошо адсорбируется на поверхности твердых частиц золы, сажи, графита, на пылинках соединений кальция и кремния, с которыми из воздуха попадает в водные бассейны и почву. Для сокращения количества канцерогенных углеводородов в первую очередь необходимо обеспечить режим полного сгорания топлива, организовать эффективный локальный отсос газов как организованных, так и неорганизованных (особенно выбросов коксовых и пекококсовых печей) с последующей их химической очисткой. При абсорбционных процессах очистки газов канцерогенные вещества практически не обезвреживаются, а лишь переводятся из газовой в жидкую фазу. При этом следует также учесть, что БП обладает высокой химической, биологической и термической устойчивостью, из-за чего его обезвреживание затруднено. Тем не менее, при воздействии ультрафиолетовых лучей БП подвергается окислительной фотодеградации в атмосферном воздухе, т. е. происходит самоочищение атмосферы.
Таким образом, защита окружающей среды при производстве кокса является весьма сложной задачей как в техническом, так и в технологическом отношении. Данные о количественно-качественном составе вредных пылегазовых выбросов при загрузке угольной шихты и выдаче кокса приведены в табл.3. Для сокращения вредных выбросов можно рекомендовать, например, строительство коксовых батарей большой единичной мощности объемом камер 50 м3 и более, с бездымной загрузкой шихты, беспылевой выдачей и сухим тушением кокса.
Таблица 3. Удельные выбросы вредных веществ в период загрузки коксовых печей углем и при выдаче кокса
Объем |
Удельные выбросы, г/т кокса |
||||||||
Точки выбросов |
выбросов ._з/_. |
угле- |
|||||||
м /т |
Н2S |
NН3 |
HCN |
С2Н5ОН |
водо- |
SO2 |
СО |
NOx |
|
кокса |
роды |
||||||||
Стояки коксовой |
15 |
0,2 |
5,2 |
0,075 |
0,09 |
19 |
2,5 |
3,7 |
7,2 |
печи |
|||||||||
Загрузочные люки |
4,7 |
0,61 |
1,6 |
0,24 |
0,03 |
6 |
0,8 |
1,3 |
2,3 |
Бункера угля |
165 |
21,5 |
57 |
0,85 |
0,99 |
214 |
28 |
41 |
79 |
загрузочных вагонов |
|||||||||
Тушильный вагон в |
190 |
7,6 |
51 |
0,5 |
36 |
32 |
3,4 |
||
период выдачи кокса |
|||||||||
Всего |
375 |
30 |
115 |
1,16 |
1,6 |
275 |
63 |
46 |
92 |
Пылегазовые выделения можно также уменьшить, закрыв тракты транспортирования угля и кокса кожухами, загерметизировав пылящее оборудование или организовав локальные отсосы пыли и ее очистку сухими или мокрыми методами. Уменьшить загрязнение воздуха пылью на рабочих местах, площадках и в производственных помещениях коксовых цехов можно своевременной уборкой. В настоящее время разработаны пневматический и роторный механизмы для уборки площадок коксовой батареи. Верх печи, пути коксовоза и помещения под коксосортировкой можно убирать с помощью самоходной пневмомашины. Другие помещения целесообразно убирать гидросмывом, при этом необходимо иметь отдельные лотки и шламопроводы для удаления водных суспензий с мелким шламом и крупными частицами во избежание забивания канализационной сети. Отстойники и хранилища нужно очищать от осадков механизированным способом с применением гидравлической размывки отложений.
Зачистка отложений на дверях и рамах коксовых печей обеспечивает снижение выделений газа и пыли в процессе коксования. Основным источником пылегазовых выбросов является загрузка коксовых печей угольной шихтой. Бездымная загрузка шихты с отсосом пылегазовых выбросов, например, паровой инжекцией (давление пара в форсунках 0,7—0,8 МПа и более) в газосборники резко сокращает загрязнение воздуха коксовыми батареями. Применением гидроинжекции (распылением в стояках фенольной воды под давлением 3—4 МПа) наряду с уменьшением выбросов в атмосферу можно снизить объем сточных фенольных вод. Гидроинжекция улучшает очистку газосборников от отложений, снижает температуру газов, но требует дополнительных агрегатов для отстаивания и осветления оборотной воды. При отсосе пылегазовых выбросов в газосборники смола загрязняется шламом, что требует дополнительных мер для их удаления из сборников смолы. Рекомендуется отстойники смолы оснащать механическими устройствами для уборки фусов и перерабатывать их с целью обеспечения безотходного использования.
Рис.2 Бездымная загрузка угольной шихты с отсосом газа в газосборники Более перспективной может быть система отдельного отвода и очистки пылегазовых выбросов от коксовых печей. Она осуществляется посредством компактных устройств, |
На рис.2 приведена схема бездымной загрузки угольной шихты с отсосом газов в газосборники. В коксовую камеру 1 при закрытых дверях 2 через загрузочные люки 3 из бункеров 4 углезагрузочного вагона 5 поочередно загружают угольную шихту. Пылегазовые выбросы отсасывают через стояки 6 паровым инжектированием (или гидроинжекцией) через сопла 7 в газосборник 8. Шихта в коксовой камере разравнивается планировочной штангой 9, оснащенной уплотняющим устройством 10. На коксовыталкивателе 11 установлена штанга 12 для выдачи кокса из печи через нжсонаправляющую 14 двересъемной машины 13 в тушильный вагон. 15. Охлажденный кокс выгружают на коксовую рампу 16 и конвейером подают на коксосортировку. Кроме передвижных газоочистных устройств, можно применять газопровод-коллектор, устанавливаемый
рядом с газосборником. В отдельных случаях к газосборникам можно подсоединять штуцеры-отводы для индивидуальной системы отсоса газов в газосборники, минуя стояки. Однако излишнее усложнение системы соединения газопроводов затрудняет доступ к ним, механизацию и автоматизацию процесса.
Можно применять также и другие методы и аппараты по отводу и очистке газов. Например, бездымная загрузка угольной шихты на одном из коксохимических заводов Японии совмещена с инжектированием газов в газосборник с помощью аммиачной воды. На многих коксохимических заводах ФРГ применяют бездымную загрузку с помощью \глезагрузочных вагонов с отсасыванием и очисткой пылегазовых выбросов трубами Вентури или центробежными промывателями с дожиганием газов на свече или в специальных печах перед выбросом их в атмосферу.
При применении для коксования термоподготовленной угольной шихты сокращаются время коксования и количество вредных выделений в атмосферу. Поэтому система загрузки печей угольной шихтой при 150— 250 °С, содержащей не более 2% влаги, жвляется более перспективной. Сухая шихта хорошо растекается по печи и не требует планирования, образует меньше пылегазовых выделений. Загружать печь можно с помощью специального углезагрузочного вагона через средний люк и одновременно отсасывать газы через оба крайних люка с последующей подачей газа на индивидуальную систему очистки и дожигания горючих компонентов. Локальная аспирационно-очистительная система состоит из двухступенчатой сухой и мокрой газоочистки от пыли, вентилятора и устройства, дожигающего СО и другие органические вещества.
Система загрузки угольной шихты, отсоса и очистки газов (рис. 3) работает следующим образом. Из бункера 2 углезагрузочного вагона / уголь стекает через центральный люк 3 в печь 4. Пиролизные и дымовые газы вместе с пылью через боковые люки 5 отсасываются дымососом 6 и очищаются в сухом -7 и мокром 8 пылеуловителях. В печи-смесителе 9 дожигаются органические примеси подогревом газов до температуры не ниже 700° С путем сжигания коксового газа в горелке 10. Дымовые газы через трубу 11 выбрасывают в атмосферу. Сухие пылеуловители (циклоны) соединены общим газоходом 12. В дымосос б для коагуляции пыли подают воду из бака 13 насосом 14 в форсунки 75. Шламовую воду собирают в гидрозатворах 16 и периодически отправляет на переработку по трубопроводам. По окончании загрузки шихты отключают локальную систему отсоса, а газы через стояки 17 направляют в газосборники 18. Система несколько сложна в эксплуатации.
Рис. 3 Локальное аспирационное устройство для очистки от газов пыли и дожигания горючих компонентов при загрузке шихты
Не менее важны для защиты среды от загрязнения разработка и промышленное применение системы беспылевой выдачи кокса из коксовых печей, например, с помощью стационарных укрытий коксонаправляющей и тушильного вагона. Известна система с применением передвижных вытяжных зонтов (колпаков) и общего газохода-коллектора для отсоса газов, смонтированного вдоль коксовой батареи. Отсос и очистка газов осуществляются стационарной установкой мокрого типа.
Можно применять также системы беспылевой выдачи кокса с мокрым или сухим тушением его на передвижных устройствах, находящихся рядом с тушильным вагоном и перемещающихся вместе. За рубежом делали попытки полного укрытия коксовой стороны батареи. При этом длинная галерея оснащена мощными дымососами и газоочистками мокрого типа.
Большие количества вредных выбросов образуются при мокром тушении кокса фенольной водой. Количество канцерогенных веществ в воде составляет примерно 0,1% от наличия в воде смолистых соединений. Основная часть летучих соединений не сгорает, а с парами воды поступает в атмосферу, причем в течение 1,5— 2,5 мин упаривается 0,4—0,5 м3 воды на 1 т кокса. Поэтому для тушения кокса рекомендуется применять техническую или оборотную воду, очищенную от фенолов, цианидов и других веществ. Состав вредных выделений при тушении кокса приведен в табл. 4.
После кратковременного отстаивания кокс выдают на рампу, где он находится 10—20 мин. При этом вода с кокса и с рампы стекает в дренажный колодец, который периодически очищают от шлама. Затем кокс перегружают на транспортер и через перегрузочную станцию на валковый грохот коксосортировки.
При сухом тушении кокса на установках сухого тушения (УСТК) системы кокса вредные пылегазовые выбросы минимальны благодаря герметичности системы. Для получения пара используют тепло раскаленного кокса, которое можно также использовать для конверсии коксового газа с получением восстановительного газа. В этом случае CO2, С>2 и CH4 можно превратить в СО и Н2.
Процесс сухого, тушения кокса (рис. 4) проводят по следующей схеме. Раскаленный кокс при 950—1050 °С в специальном тушильном вагоне со съемным кузовом и направляющими стойками 2 подают в шахту подъемника УСТК. Из вагона через загрузочное устройство 3 кокс выгружают в форкамеру 4, из которой он поступает в камеру тушения 5. Камера оснащена периферийными дутьевыми решетками 6, а форкамера, служащая для накопления горячего кокса, имеет кольцевой отвод 7 для циркулирующих инертных газов (продуктов сгорания кокса или коксового газа). Горячий инертный газ из камеры тушения отсасывают в пылеосадительную камеру 8 с перегородкой 9, в которой оседает крупная фракция пыли. Система утилизации тепла
состоит из водотрубного котла-утилизатора 12 с водонагревателем и пароперегревателем. В котле-утилизаторе газы охлаждаются до 150—200 °С, а в циклоне 10 очищаются от мелкой пыли. Уловленную пыль через герметичный бункер 11 выгружают в контейнеры и отправляют на брикетирование. Охлажденный и обеспыленный газ газодувкой 13 подают в камеру тушения кокса. Кокс при 200— 250° С через двойной затвор и разгрузочное устройство 14 выгружается автоматически на коксовую рампу 75 и по ленточному конвейеру 16 отправляется на коксосортировку.
Несмотря на герметичность УСТК, в нее попадает некоторое количество воздуха, что приводит к сгоранию части кокса и дополнительному образованию теплоносителя. Избыточное количество газов периодически сбрасывают в атмосферу. В этих газах обычно содержится около 20 % СО и более, поэтому их обезвреживают сжиганием на свече, оснащенной автоматическим зажигающим устройством, сблокированным с механизмом сброса избытка газов на УСТК. Производительность УСТК до 1200-т кокса в сутки. Конечная температура кокса перед выдачей на рампу не должна превышать 250° С во избежание самовозгорания. Коксовая рампа должна быть механизирована и работать в непрерывном режиме приема и выгрузки кокса на конвейеры, подающие кокс Рис.4 Установка сухого сушения кокса на коксосортировку.
Применение сухого тушения кокса позволяет не только резко сократить пыле-гжэовые выбросы, но и уменьшить тепловые выбросы в атмосферу. При сухом тушении 6 щи. т кокса с использованием тепла можно сэкономить тепло, эквивалентное более 200 :. т угля, и получить пар давлением 2,2 МПа с температурой перегрева 450° С. Затраты производстве такого пара в два раза ниже, чем на ТЭЦ. На 1 т кокса можно полуоколо 0,5 т пара выше приведенных параметров.
Завершающей стадией производства кокса является его разделение на классы. При этом вместе с парами воды может выделяться определенная часть пылевидных частиц кокса. Для предотвращения этого на всем пути транспортирования кокса, особенно в местах перевалок, создают специальные укрытия. Конвейеры оснащают виброжелобами для отделения пыли, грохоты укрывают кожухами и оснащают локальными вытяжными устройствами с очисткой выбрасываемого воздуха от пыли. При хорошем техническом состоянии транспортного хозяйства и герметичности систем, удовлетворительной работе вентиляционных установок и циклонов-пылеуловителей унос пыли в атмосферу незначителен. Другие вредные примеси в атмосферу на коксосортировках и при транспортировании кокса, как правило, не выделяются. Так же загрязнение окружающей среды предотвращается при производстве литейного кокса.
Особое место как источник загрязнения окружающей среды в коксохимии занимает пекококсовое производство. Пылегазовые выбросы пекококсового производства обладают высокой токсичностью. Подготовка пековой смолы к коксованию и производство пекового кокса являются основными источниками выбросов веществ с канцерогенными свойствами. Уменьшить эти выбросы можно герметизацией аппаратов и газопроводов, устройством локальных систем отсоса газовых выбросов и их очисткой от химических примесей, разработкой непрерывных процессов окисления и коксования пековой смолы и др. В существующих камерных пекококсовых печах целесообразно внедрить системы отсоса и очистки выбросов, загрузки смолы и выдачи кокса, аналогичные системам, разрабатываемым и применяемым на коксовых печах. Обезвредить выбросы можно, установив системы термокаталитического дожигания с использованием тепла. Выбросы пекококсовых печей необходимо также направлять в газопровод прямого коксового газа. Выбросы из воздушников хранилищ, сборников и других емкостей, содержащих жидкие продукты и выделяющие в атмосферу летучие углеводороды, необходимо направлять в общий газоход с поглощением их, например, поглотительным маслом или обезвреживать термокаталитическим дожиганием, а также направлять в топки котлов.
В настоящее время отсутствует достаточно полная и точная характеристика пылегазовых выбросов коксохимического производства, а имеющиеся сведения требуют уточнения и дополнения. Это обусловлено наличием ,большого числа мелких источников выбросов, в том числе неорганизованных, необходимостью определения состава сложных смесей газов, периодичностью и непостоянством концентрации примесей выбросов и др.