Машиностроение и механика

  • Increase font size
  • Default font size
  • Decrease font size

Обзор основных видов механизмов

Article Index
Обзор основных видов механизмов
Кулачковые механизмы
Фрикционные механизмы
Зубчатые механизмы
Формы зуба передач
Механизмы с гибкими звеньями
Клиновые и винтовые механизмы
Механизмы с гидравлическими и пневманическими устройствами
All Pages

РЫЧАЖНЫЕ МЕХАНИЗМЫ

Рычажными механизмами называют механизмы, в которые входят жесткие звенья, соединенные между собой вращательными и поступательными кинема­тическими парами. Простейшим рычажным механизмом является двухзвенный механизм, состоящий из неподвижного звена-стойки 2 (Рис.1.1) и подвижного рычага 1, имеющего возможность вращаться вокруг неподвижной оси (обычно это начальный механизм).

двухзвенный механизм

Рис.1.1 Двухзвенный рычажный механизм

К двухзвенным рычажным механизмам относятся механизмы многих ро­тационных машин: электромоторов, лопастных турбин и вентиляторов. Меха­низмы всех этих машин состоят из стойки и вращающегося в неподвижных подшипниках звена (ротора).

Более сложными рычажными механизмами являются механизмы, состоя­щие из четырех звеньев, так называемые четырехзвенные механизмы.

На Рис.1.2 показан механизм шарнирного четырехзвенника, состоящего из трех подвижных звеньев 1, 2, 3 и одного неподвижного звена 4. Звено 1, со­единенное со стойкой, может совершать полный оборот и носит название кри­вошипа. Такой шарнирный четырехзвенник, имеющий в своем составе один кривошип и одно коромысло называется кривошипно-коромысловым меха­низмом, где вращательное движение кривошипа посредством шатуна преобразуется в качательное движение коромысла. Если кривошип и шатун вытянуты в одну линию, то коромысло займет крайнее правое положение, а при наложении друг на друга – левое.

Механизм шарнирного четырехзвенника

Рис. 1.2 Механизм шарнирного четырехзвенника

Примером такого механизма является механизм представленный на Рис.1.3, где звено 1 – кривошип (входное звено), звено 2 – шатун, звено 3 – ко­ромысло. Точка MS двигаясь по кривой clip_image006[6] описывает траекторию clip_image008. Одни траектории могут быть воспроизведены рычажными механизмами теоретически точно, другие – приближенно, с достаточной для практики степе­нью точности.

Рассматриваемый механизм, называемый симметричным механизмом Чебышева, часто применяют в качестве кругового направляющего механизма, у которого АВ = ВС = ВМ = 1. При указанных соотношениях

Кривошипно-коромысловый механизм

Рис. 1.3 Кривошипно-коромысловый механизм

точка М шатуна АВ описывает траекторию, симметричную относительно оси n - п. Угол наклона оси симметрии к линии центров СО определяется: ÐМСО = π – Ω / 2. Часть траектории точки М является дугой окружности радиуса О1М, что может быть использовано в механизмах с остановкой выходного звена.

Другим примером четырехзвенника является широко распро­страненный в технике кривошипно-ползунный механизм (Рис. 1.4).

Кривошипно-ползунный механизм

Рис. 1.4 Кривошипно-ползунный механизм

В этом механизме вместо коромысла устанавливается ползун, движущийся в непод­вижной направляющей. Этот кривошипно-шатунный механизм применяют в поршневых двигателях, насосах, компрессорах и т.д. Если эксцентриситет е равен нулю, то получим центральный кривошипно-ползунный механизм или аксиальный. При е не равном нулю кривошипно-ползунный механизм называ­ется нецентральным или дезаксиальным. Здесь вращение кривошипа ОА через шатун АВ преобразуется в возвратно-поступательное движение ползуна. Есте­ственно крайние положения ползуна, будут при расположении кривошипа и шатуна в одну линию.

Если в рассмотренном механизме заменить неподвиж­ную направляющую на подвижную, которая называется кулисой, то получим четырехзвенный кулисный механизм с кулисным камнем. Примером такого механизма может слу­жить кулисный механизм строгального станка (Рис.1.5). Кривошип 1, враща­ясь вокруг оси, через кулисный камень 2 заставляет кулису 3 совершать качательное движение. При этом кулисный камень относительно кулисы движется возвратно-поступательно.

Четырехзвенный кулисный механизм

Рис. 1.5 Четырехзвенный кулисный механизм

Крайние положения кулисы будут при перпендикулярном расположении к ней кривошипа. Построить такие положения просто: изображается окружность радиусом равным длине кривошипа (траектория движения точки А), и проводятся касательные из оси вращения кулисы.

Таким образом звенья могут совершать поступательное, вращательное или сложное движения.


 

Кулачковые механизмы

Широкое распространение в технике получили кулачковые механизмы. Простейший кулачковый механизм – трехзвенный, состоящий из кулачка, тол­кателя и стойки. Входным звеном чаще всего бывает кулачок. Кулачковые механизмы бывают как плоскими, так и пространственными.

Плоские кулачковые механизмы для удобства рассмотрения разобьем на ме­ханизмы в зависимости от движения выходного звена на два вида:

1.Кулачковый механизм с поступательно движущимся толкателем(ползуном).

2. Кулачковый механизм с поворачивающимся толкателем (коромыслом).

Пример первого кулачкового механизма показан на Рис.2.1. Кулачок 1, вращаясь с заданной угловой скоростью, действует на ролик 3 и заставляет толкатель 2 в виде ползуна дви­гаться в направляющих возвратно-поступательно.

На Рис.2.2 приведена схема кулачкового механизма с поворачивающим­ся толкателем (коромыслом). Кулачок 1, вращаясь с заданной угловой скоростью ω1, действует на толкатель 2 и заставляет последний вращаться вокруг оси вращения А.

Механизм с поступательно-  движущимся толкателем

улачковый механизм с поворачивающимся толкателем

Рис.2.1 Механизм с поступательно-

движущимся толкателем

Рис.2.2 Кулачковый механизм с поворачивающимся толкателем

Кулачковые механизмы имеют разновидности в зависимости от геометрических форм элемента выходного (ведомого) звена и взаимного расположения толкателя и кулачка. Например, кулачковый механизм, показанный на Рис.2.1 может иметь разные виды ведомых звеньев (Рис.2.3).

Виды ведомых звеньев

Рис.2.3 Виды ведомых звеньев, применяемые для кулачковых механизмов с поступательно движущимся выходным звеном:

а) толкатель с ост­рием; б) с плоскостью; в) толкатель с роликом;

г) толкатель со сфериче­ским наконечником.

Кулачковые механизмы с поступательно движущимся ведомым звеном можно раз­делить на:

а) кулачковые механизмы с центральным толкателем, у которых направление движения толкателя совпадает с осью вращения кулачка (Рис.2.4);

б) кулачковые механизмы со смещенным толкателем (дезаксиальные), если ось толкателя отстоит на расстояние е дезаксиал от оси вращения ку­лачка (Рис.2.5).

Кулачковый механизм с центральным толкателем

 Кулачковый механизм со смещенным толкателем

Рис.2.4 Кулачковый механизм с центральным толкателем

Рис.2.5 Кулачковый механизм со смещенным толкателем

При работе кулачковых механизмов необходимо, чтобы было постоянное соприкосновение ведущего и ведомого звеньев. Это может быть обеспечено либо силовым замыканием, чаще всего с помощью пружин (Рис.2.6), либо геометрически, если выполнить профиль кулачка 1 в форме паза, боковые поверхности которого воздействуют на ролик 3 толкателя 2.

Кулачковый механизм с силовым замыканием

Кулачковый механизм с геометрическим замыканием

Рис.2.6 Кулачковый механизм с силовым замыканием

Рис.2.7 Кулачковый механизм с геометрическим замыканием

Пазовый кулачок обеспечивает геометрическое замыкание высшей пары кулачкового механизма (Рис.2.7).

Все рассмотренные выше кулачковые механизмы плоские. Часто встреча­ются пространственные кулачковые механизмы, которые весьма разнообразны по конструктивному оформлению. Наиболее распространенными пространст­венными кулачковыми механизмами являются механизмы барабанного типа (Рис.2.8). Цилиндрический кулачок 1 с профильным пазом, обеспечивающим кинематическое замыкание высшей пары, вращается с постоянной угловой скоростью и через ролик 3 сообщает качательное движение толкателю 2, закон изменения которого зависит от очертания паза.

ространственный кулачковый механизм барабанного типа

Рис.2.8 Пространственный кулачковый механизм барабанного типа


 

Фрикционные механизмы


В фрикционных механизмах передача вращательного движения между звеньями (катками – роликами) осуществляется вследствие трения возникающего между ними. На Рис.3.1 показан фрикционный механизм с цилиндрическими катка­ми. Передача движения от ведущего катка 1 к ведомому катку 2 осуществляет­ся силой трения, возникающей под действием пружины с силой равной Q.

Нами рассмотрен фрикционный механизм с цилиндрическими катками для передачи вращательного движения между параллельными валами. В передачах же с пересекающимися осями применяют фрикционные механизмы с коническими катками.

Достоинствами фрикционной передачи являются плавность работы и возможность осуществления бесступенчатого изменения передаточного отношения, а также реверсирования. Поэтому фрикционные передачи широко применяют в машиностроении в качестве вариаторов. Простейший вариатор, называемый лобовым (Рис.3.2), состоит из диска 1 и ролика 2.

Фрикционный механизм с цилиндрическими катками

Рис.3.1 Фрикционный механизм с цилиндрическими катками

Ролик можно смещать вдоль оси О2, следствием чего точка контакта М может занимать различные положения, определяемые расстоянием x. Это позволяет плавно регулировать величину и направление угловой скорости выходного звена.

Лобовая фрикционная передача

Рис.3.2 Лобовая фрикционная передача

В качестве вариаторов можно применять также фрикционные механизмы с коническими барабанами.

В процессе эксплуатации фрикционных механизмов, вследствие перегрузки или попадания масла на них, может наблюдаться проскальзывание одного кат­ка относительно другого. Поэтому фрикционные механизмы не обеспечивают постоянства передаточного отношения между ведущим и ведомым валами, что является существенным недостатком, который отсутствует у зубчатых механизмов.


 

Зубчатые механизмы


Самое широкое применение в машинах и приборах находят зубчатые ме­ханизмы которые позволяют передавать вращательные движения от одного вала к другому с заданными угловыми скоростями.

В зависимости от расположения осей валов, между которыми осуществ­ляется вращательное движение при постоянном значении передаточного отно­шения, различают передачи:

1. При параллельных валах

2. При пересекающихся валах

3. При скрещивающихся валах

1) На Рис.4.1 показаны цилиндрические колеса с внешним зацеплением, а на Рис.4.2 изображены цилиндрические колеса с внутренним зацеплением, где зубья одного из колес расположены по внутренней поверхности.

Зубчатый механизм с внешним зацеплением

Зубчатый механизм с внутренним зацеплением

Рис.4.1 Зубчатый механизм с внешним зацеплением

Рис.4.2 Зубчатый механизм с внутренним зацеплением

Наряду с прямозубыми, широкое распространение получили зубчатые колеса с косыми и шевронными зубьями.

Зубчатый механизм с реечным зацеплением имеет в составе зубчатую рейку 1 и зубчатое колесо 2 (Рис.4.3).

Зубчатый механизм с реечным зацеплением

Рис.4.3 Зубчатый механизм с реечным зацеплением

2) При пересекающихся валах применяют конические колеса (Рис.4.4) с прямыми зубьями, а также с косыми, криволинейными и круглыми.

Коническая зубчатая передача

Рис.4.4 Коническая зубчатая передача

3) При скрещивающихся валах используется червячная передача (Рис.4.5), у которой входным звеном является червяк 1, а также могут применяться винтовые конические (гипоидные) колеса и винто­вые цилиндрические (геликоидальные) колеса.

Червячная передача

Рис.4.5 Червячная передача


 

Формы зуба передач


а) зубчатые передачи с эвольвентным профилем зубьев;

б) передачи с циклоидным профилем зуба;

в) косозубые передачи с зацеплением Новикова М.Л., имеющем в нормальном сечении круговой профиль зуба.

Зубчатые передачи осуществляются не только в виде отдельной пары зубчатых колес в одноступенчатой передаче, но и в более сложных комбинациях, образуя сложные механизмы. Различают два вида таких механизмов: многоступен­чатые зубчатые механизмы с неподвижными осями и зубчатые механизмы с колесами, имеющими подвижные оси.

1. Многоступенчатые зубчатые механизмы с неподвижными осями подразделяются на рядовые и ступенчатые зубчатые механизмы.

1.1 Рядовое соединение зубчатых колес представляет собой пос-ледовательное соединение нескольких зубчатых колес (Рис.4.6).

Рядовое соединение зубчатых колес

Рис.4.6 Рядовое соединение зубчатых колес

Двухступенчатый зубчатый механизм

Рис.4.7 Двухступенчатый зубчатый механизм

1.2 В ступенчатых зубчатых механизмах последовательно соединяются несколько пар колес (Рис.4.7), так что на осях может быть помещено более одного колеса.

2. Специальные многоступенчатые механизмы имеют некоторые зубчатые колеса с подвижными осями (Рис.4.8). Здесь на подвижной оси О2 находится колесо 2, которое при вращении водила Н вокруг центральной оси О1 обегает неподвижное (опорное) колесо 3 и вращается вокруг собственной оси.

Планетарный зубчатый механизм

Рис.4.8 Планетарный зубчатый механизм

Колеса 1 и 3 называются центральными колесами (солнечным и корончатым), колесо 2 сателлит или планетарное колесо. Рассматриваемый зубчатый механизм называется планетарным и имеет одну степень под-

Дифференциальный механизм

Рис.4.9 Дифференциальный механизм

вижности, т.к. имеется неподвижное колесо 3. Достаточно задать закон движения одному звену, чтобы все остальные звенья двигались определенно и целесообразно.

Иными словами работу механизма следует описать так: центральное колесо 1 сообщает движение сателлиту 2, который обкатывается по колесу 3 и увлекает за собой по часовой стрелке водило.

Планетарные механизмы компактны и используются для значительного уменьшения числа оборотов на выходе, при этом передаточные отношения мо­гут быть более тысячи,

Планетарные механизмы, в которых все колеса подвижны, обладают двумя степенями подвижности и называются дифференциальными механизмами (Рис.4.9). Такой механизм должен иметь заданными законы движения двух звеньев.

К зубчатым механизмам относятся и устройства прерывистого движения: храповые механизмы, мальтийские механизмы и другие.


 

Механизмы с гибкими звеньями


Кроме механизмов с твердыми звеньями, рассмотренными нами выше, в ка­честве промежуточных звеньев применяются гибкие звенья (ремни, канаты, цепи, ленты и т.д.). Механизмы с гибкими звеньями применяются при значительных межосевых расстояниях.

 Открытая ременная передача

Рис.5.1 Открытая ременная передача

Ременные передачи по конструктивному оформлению подразделяются на:

1.Передачи с параллельными осями валов.

2.Передачи с непараллельными осями валов.

На Рис.5.1 показан простейший пример открытой ременной передачи, у которой вращение шкивов 1 и 2 происходит в одном и том же направлении.

Передача ремнем осуществляется за счет трения возникающего между шкивом и ремнем. Ремень может быть плоский, клиновой или зубчатый.

В перекрестной ременной передаче (Рис.5.2) вращение шкивов 1 и 2

происходит в разных направлениях.

Перекрестная ременная передача

Рис.5.2 Перекрестная ременная передача

.

Полуперекрестная ременная передача

Рис.5.3 Полуперекрестная ременная передача

Примерами передачи с непараллельными осями валов может служить полуперекрестная ременная передача (Рис.5.3), применяемая при передаче вращения между скрещивающимися валами.

Для обеспечения необходимой силы трения между ремнем и шкивами, ремень должен быть натянут. Простейшее натяжное приспособление показано на Рис.5.4, где ролик 3 установлен на рычаге 4, который вращается вокруг оси В. На противоположном плече рычага закреплен груз 5, перемещением ко­торого вдоль рычага достигается регулировка силы натяжения.

Открытая ременная передача с натяжным роликом

Рис.5.4 Открытая ременная передача с натяжным роликом


 

Клиновые и винтовые механизмы


Эти механизмы трехзвенные. Они состоят из стойки и двух подвижных звеньев, образующих три кинематические пары.

1) Трехзвенный клиновый механизм простейшего вида, показанный на Рис.6.1, состоит из клиньев 1 и 2 и стойки 3. Он служит для преобразования одного прямолинейного движения в другое. Например, в механизме клинчато­го пресса, клин 1, движущийся под действием силы F1, перемещает вверх клин 2, преодолевая усилие F2. Эти механизмы применяются для различного вида прессов, поглощающих аппаратов железнодорожных автосцепок, зажимов, механизмов подачи деталей и т.д.

Простой клиновый механизм

Рис.6.1 Простой клиновый механизм

2) Трехзвенный винтовой механизм (Рис.6.2) состоит из винта 1, гайки 2 и стойки 3. Он предназначен для преобразования вращательного движения винта в поступательное движение гайки по направляющим стойки. Винтовой механизм, иначе называемый передачей винт - гайка, применяют для осуществления перемещений, связанных с теми или иными технологическими процессами (винты прессов, ходовые винты станков, домкраты, струбцины, съемники и т. д.).

Трехзвенный винтовой механизм

Рис.6.2 Трехзвенный винтовой механизм


 

Механизмы с гидравлическими и пневманическими устройствами

Простейший механизм с гидравлическим устройством является гидравлический пресс (Рис.7.1). Его можно рассматривать как четырехзвенный механизм, в котором ведущим звеном может быть один из поршней, например 1, ведомым — поршень 2. Жидкость 3 является звеном, передающим движение от ведущего к ведомому поршню с выигрышем в силе. Здесь емкость 4 – стойка.

Гидравлический пресс

Рис. 7.1 Гидравлический пресс

Аналогичное устройство имеют многие механизмы, в которых использу­ется сжатый воздух, например, различные станочные приспособления, инструменты.