Машиностроение и механика

  • Increase font size
  • Default font size
  • Decrease font size

Ферромагнетизм

Article Index
Ферромагнетизм
Доменная структура
Структура ферромагнетиков
Магнитострикционная деформация
Магнитная проницаемость
Потери в магнитных материалах
Электрические свойства магнитных материалов
Классификация магнитных материалов
Процесс смешения границ доменов
Механические, магнитные и электрические свойства магнитомягких ферритов
Специальные магнитные материалы
Магнитодиэлектрики
All Pages

ФЕРРОМАГНЕТИЗМ

 

Природа ферромагнетизма

 

Возникновение магнитных свойству ферромагнетиков связано с их доменным строением. Домены - это области самопроизвольной намагниченности, возникающие даже в отсутствии внешнего магнитного поля, в которых магнитные моменты атомов ориентированы параллельно.

Атомы или ионы приобретают магнитный момент, как правило, если они имеют некомпенсированные спины электронов. Например, в атомах железа на внутренней 3d – оболочке имеется четыре некомпенсированных спина. Так как самопроизвольная намагниченность относится к внутриатомным явлениям, то ее природа может быть установлена только на основе квантово – механических понятий.

По Я.И.Френкелю и В. Гейзенбергу главную роль в возникновении ферромагнитного состоянию играют силы обменного взаимодействия между атомами, имеющие квантовый характер и по происхождению являющиеся электростатическими.


clip_image002

 

Рис.5.1 Зависимость интеграла обменной энергии А от отношения межатомного расстояния а к диаметру незаполненной электронной оболочки d

 

Энергию А, возникающую в результате обмена электронами обмена электронами родственных атомов, называют обменной энергией или интегралом обменной энергии. При положительном интегралом обменной энергии А на рисунке 5.1, что соответствует минимуму электростатической энергии, возникает параллельная ориентация спинов. При отрицательном знаке А энергетически выгодно антипараллельное расположение спинов. Численное значение и знак интеграла А зависит от степени перекрытия электронных оболочек, то есть зависит от расстояния между атомами.

На рисунке 5.1 показано изменение интеграла обменной энергии в функции от отношения межатомного расстояния к диаметру незаполненной электронной оболочки d. При а/d > 1,5 происходит переход от антиферромагнитного состояния к ферромагнитному. Эта зависимость позволила обнаружить ферромагнетизм у сплавов марганца с неферромагнитным висмутом, сурьмой, серой и т.д.

Хотя максимум обменного взаимодействия в металлах носит более сложный характер, чем это следует из теории Френкеля – Гейзенберга, данная теория позволяет качественно объяснить причину незаполненных внутренних электронных оболочек, радиус которых должен быть мал по сравнению с расстоянием между ядрами в решетке.

 


 

Доменная структура

 

Каждый реальный магнитный материал разделен по всему объему на множество замкнутых областей – доменов, в каждом из которых самопроизвольная намагниченность од6нородна и направлена по одной из осей легкой намагниченности.


clip_image004

 

Рис. 5.2. Стенка Блоха

Такое состояние энергетически выгодно и кристалл в целом немагнитен, так как магнитные моменты доменов ориентированны в пространстве равно вероятно. Между соседними доменами возникают граничные слои (стенки Блоха). Внутри доменных стенок векторы намагниченности плавно поворачиваются на рисунке 5.2. Объем доменов может колебаться в широких пределах от 10clip_image006 до 10clip_image008см³.

Ширина границ между антипараллельными доменами для железа 13·10clip_image010м, то есть около 500 элементарных ячеек. Толщина границы зависит главным образом от соотношения энергий: обменной. Магнитной, анизотропии и магнитоупругой. Размеры самих доменов зависят от неметаллических включений, границ зерен, скоплений дислокаций и других неоднородностей. Обычно домены имеют правильную форму.

На рисунке 5.3 показана идеализированная доменная структура кристаллического ферромагнетика.

Доменная структура поликристалла приведены на рисунке 5.4.

В магнитных материалах, предназначенных для устройств записи и хранения информации, создаются изолированные цилиндрические магнитные домены (ЦМД). На Рис.5.4 показаны ЦМД в тонкой магнитной пленке. Емкость отдельного ЦМД - элемента может достигать clip_image012бит. В отсутствии внешнего магнитного поля смещение в ЦМД – материалах доменная структура

clip_image014

Рис. 5.3. Идеализированная доменная структура кристаллического ферромагнетика

 


 

Структура ферромагнетиков

 

Ферромагнетики в основном кристаллизируются в трех типах решеток: кубической, пространственной, кубической объемно-центрированной и гексонольной, показанной на рисунке 5.5.

Зависимости В = f(Н) показывают, что кристаллы являются магнитоанизотропными. На рисунке эта зависимость показана для железа. Направления намагничивания указаны в квадратных скобках. При отсутствии внешнего поля векторы намагничивания располагаются в легком направлении. Площадь, заключенная между кривыми легкого и трудного намагничивания, пропорциональна энергии, которую требуется затратить для изменения направления намагничивания от легкого до трудного.


clip_image016

 

Рис. 5.4. Доменная структура поликристалла

Энергию естественной кристаллографической магнитной анизотропии –Ек характеризуют константами кристаллографической магнитной анизотропии. Для кубического кристалла

clip_image018,

где К0, К1, К2 – константы кристаллографической магнитной анизотропии;

clip_image020- направляющие косинусы вектора намагниченности по отношению к осям x, y, z ребер куба.

 


 

Магнитострикционная деформация

 

Это обратимое изменение формы и размеров образца при переходе ферромагнетика через точку Кюри при отсутствии внешнего поля (самопроизвольная магнитострикция) и при воздействии внешнего поля на ферромагнетик при clip_image022<clip_image024.

Сумму энергий кристаллографической магнитной анизотропии и магнитоупругой результате магнитострикции называют энергией магнитной анизотропии.


clip_image026


clip_image028


clip_image030

Рис.5.5. Анизотропия магнитных свойств железа

 


 

Магнитная проницаемость

 

В технике используется несколько десятков видов магнитной проницаемости в зависимости от конкретных применений магнитного материала.

Магнитная индукция и напряженность поля в изотропной среде связаны простым соотношением

clip_image032,

где clip_image034- абсолютная магнитная проницаемость, характеризующая магнитные свойства среды.

Сравнивая магнитное поле тока в проводе, расположенном в данной среде и в вакууме, установили, что в зависимости от свойств среды (материала) поле получается более интенсивным, чем в вакууме (парамагнитные материалы), или наоборот, менее интенсивным (диамагнитные материалы).

Таким образом, интенсивность магнитного поля, т.е. индукция В, зависит от среды, в которой существует поле.

Абсолютная магнитная проницаемость вакуума называется магнитной постоянной clip_image036. В системе СИ для нее принято значение clip_image038 Ом·с/м.

Абсолютную магнитную проницаемость различных материалов и сред сравнивают с магнитной постоянной. Отношение абсолютной магнитной проницаемости какого-либо материала к магнитной постоянной называется магнитной проницаемостью clip_image040 (или относительной магнитной проницаемостью), так что

clip_image042.

Магнитная проницаемость – отвлеченное число. Для диамагнитных материалов и сред clip_image044<1, например, для меди clip_image040[1]=0,999995. Для парамагнитных материалов clip_image047>1, например для воздуха clip_image047[1]=1,0000031. При технических расчетах магнитная проницаемость диамагнитных и парамагнитных материалов и сред принимается равной единице.

У ферромагнитных материалов, играющих исключительную роль в электротехнике, магнитная проницаемость достигает десятков тысяч и зависит от магнитных свойств материала, температуры, интенсивности магнитного поля, т.е. величины индукции или от величины напряженности магнитного поля.

Зависимость clip_image049показана на рис.5.5 . Начальная и максимальная проницаемости являются частными случаями нормальной проницаемости

clip_image051, clip_image053.

При одновременном воздействии на магнитный материал постоянного clip_image055 и clip_image057магнитных полей и обычно, при условии clip_image057[1]<<clip_image055[1] вводят понятие дифференциальной проницаемости clip_image059

clip_image061.

 

Зависимость clip_image063. Характер этой зависимости различен в слабых, средних и сильных полях. Для clip_image065 при clip_image024[1] наблюдается четко выраженный максимум, сглаживающийся при увеличении напряженности поля на рисунке 5.3. Возрастание clip_image065[1] объясняется тем, что при нагревании облегчается смещение доменных границ и поворот векторов намагниченности доменов. Главным образом из-за уменьшения констант магнитострикции и магнитной анизотропии. Уменьшение clip_image065[2] при высоких температурах связывается с резким уменьшением спонтанной намагниченности доменов.


clip_image069

 

Рис.5.6 Зависимость магнитной проницаемости clip_image044[1] от напряженности магнитного поля Н

Зависимость clip_image063[1]. Характер этой зависимости различен в слабых, средних и сильных полях. Для clip_image065[3] при clip_image024[2] наблюдается четко выраженный максимум, сглаживающийся при увеличении напряженности поля на рисунке 5.3. Возрастание clip_image065[4] объясняется тем, что при нагревании облегчается смещение доменных границ и поворот векторов намагниченности доменов. Главным образом из-за уменьшения констант магнитострикции и магнитной анизотропии. Уменьшение clip_image065[5] при высоких температурах связывается с резким уменьшением спонтанной намагниченности доменов.

 


 

 

Потери в магнитных материалах

В переменных полях площадь петли гистерезиса увеличивается за счет потерь на гистерезис clip_image073и дополнительных потерь clip_image075. Такая петля называется динамической, а суммарные потери полными или суммарными. Потери на гистерезис, отнесенные к единице объема материала (удельные потери).

clip_image077, Дж/м³.

При перемагничивании с частотой f (Гц)

clip_image079, Вт/кг,

где clip_image081 - плотность материала, кг/м³.


clip_image083

clip_image085<clip_image087<clip_image087[1]<clip_image089

clip_image089[1]- соответствует clip_image091, clip_image085[1]- соответствует области насыщения

Рис.5.7 Зависимость магнитной проницаемости clip_image047[2] от температуры Т

Потери на вихревые токи для листового образца

clip_image093,

где clip_image095 -амплитуда магнитной индукции, Тл; f - частота переменного тока, Гц; d - толщина листа, м; clip_image081[1] - плотность, кг/м³; clip_image098- удельное электросопротивление, Ом·м

Дополнительные потери или потери на магнитную вязкость (магнитное последействие) обычно находят как разность между полными потерями и суммой потерь на гистерезис и вихревые токи

clip_image100.

Магнитная вязкость clip_image102 зависит от времени действия магнитного поля. J при включении магнитного поля Н быстро достигает значения J1, а затем со временем возрастает в соответствии с формулой

clip_image104,

 

где Jno – намагниченность при t clip_image106, clip_image108- время релаксации.

На рисунке 5.4 показана зависимость напряженности магнитного поля и намагниченности от времени действия магнитного поля. В магнитотвердых материалах время clip_image108[1] магнитной релаксации может достигать нескольких минут. Такое явление называют сверхвязкостью.

Тангенс угла магнитных потерь используется в переменных полях. Его можно выразить через параметры эквивалентной схемы, показанной на рисунке 5.5.


clip_image110

 

Рис.5.8 Зависимость намагничивания J магнитного материала от времени действия магнитного поля t

Индуктивную катушку с сердечником из магнитного материала представляют в виде последовательной схемы из индуктивности L и активного сопротивления R. Пренебрегая собственной емкостью и сопротивлением обмотки катушки, получаем

clip_image112.

Активная мощность clip_image114

clip_image116,

где clip_image118; clip_image120-магнитная восприимчивость

 


 

Электрические свойства магнитных материалов

 

Удельное электрическое сопротивление clip_image122металлических магнитных материалов зависит от состава и направления намагниченности по отношению к направлению движения электронов проводимости. Электрические свойства технических Fe, Co, Ni показаны в таблице 5.1.

clip_image124

Рис.5.9. Схема замещения а) и векторная диаграмма б) индуктивной катушки с сердечником из магнитного материала

Таблица 5.1. Характеристики некоторых материалов


материал

Р, мкОм·м

Температурный коэффициент электрического сопротивления, clip_image126clip_image128

Fe

0,097 (20°С)

6,2

Co

0,32 (500°С)

13,8 (500°С)

Ni

0,68 (0-100°С)

6,7

clip_image130


 

 

 

 

 

 

 

 

 

Рис.5.10 Кристаллическая структура направления плоскости, перпендикулярной легкого и трудного намагничивания


В чистых монокристалличеких образцах металлов наблюдается значительная анизотропия электросопротивления. Так, в монокристаллах кобальта в направлении оси С rс = 0,103 мкОм м, а в этой оси rр= 0,055 мкОм м монокристалла кобальта по рисунку 5.6.

В ферритах по сравнению с металлическими ферромагнетиками удельное электрическое сопротивление много выше, сопоставимо с clip_image122[1] полупроводников и может меняться в широких пределах в зависимости от состава, типа элементов структуры, вида примесей. Так для феррита иттрия удельное сопротивление 10clip_image133-10clip_image135Ом·м, для феррита никеля 10clip_image137- 10clip_image139 Ом·м, для феррита лития 1-10 Ом·м. Энергия активации проводимости ферритов находится в пределах 0,2 - 2 эВ. В ферритах часто наблюдается поляронная (прыжковая) проводимость, обусловленная перескоком локализованных электронов из одного состояния в другое. Поляроны – квазичастицы, образованные локализованными на ионах электронами вместе с окружающим их полем поляризации. В случае поляронов мало радиуса энергия ионизации примесного центра 0,2-0,6 эВ.

 


Классификация магнитных материалов


Все вещества при рассмотрении магнитных свойств принято называть магнетиками, когда они способны под действием магнитного поля приобретать магнитный момент (намагничиваться).

По своим магнитным свойствам магнетики подразделяются на три основные группы: диамагнетики; парамагнетики; ферромагнетики.

Количественной характеристикой намагниченного состояния вещества служит векторная величина – намагниченность J.

Диамагнетиками называются вещества, которые намагничиваются во внешнем магнитном поле в направлении, противоположном направлению вектора магнитной индукции поля. К диамагнетикам относятся вещества, магнитные моменты атомов, молекул или ионов которых в отсутствие внешнего магнитного поля равны нулю. Диамагнетиками являются инертные газы, молекулярный водород и азот, цинк, медь, золото, висмут, парафин и многие другие органические и неорганические соединения.

В случае отсутствия магнитного поля диамагнетик немагнитен, поскольку в данном случае магнитные моменты электронов взаимно компенсируются, и суммарный магнитный момент атома равен нулю.

Наряду с диамагнитными веществами существуют и парамагнитные вещества, – вещества, намагничивающиеся во внешнем магнитном поле по направлению поля. У парамагнитных веществ при отсутствии внешнего магнитного поля магнитные моменты электронов не компенсируют друг друга, и атомы (молекулы) парамагнетиков всегда обладают магнитным моментом. Однако вследствие теплового движения молекул их магнитные моменты ориентированы беспорядочно, поэтому парамагнитные вещества магнитными свойствами не обладают. При внесении парамагнетиков во внешнее магнитное поле устанавливается преимущественная ориентация магнитных моментов атомов по полю (полной ориентации препятствует тепловое движение атомов). Таким образом, парамагнетик намагничивается, создавая собственное магнитное поле, совпадающее по направлению с внешним полем и усиливающее его. При ослаблении внешнего магнитного поля до нуля ориентация магнитных моментов вследствие теплового движения нарушается и парамагнетик размагничивается.

Особый класс магнетиков образуют вещества, способные обладать намагниченностью в отсутствии внешнего магнитного поля. По своему наиболее распространенному представлению (железо) их называют ферромагнетиками. Ферромагнетиками называются твердые вещества, обладающие при не слишком высоких температурах самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий – магнитного поля, деформации, изменения температуры. Ферромагнетики в отличие от слабомагнитных диа- и парамагнетиков являются сильномагнитными средами: внутреннее магнитное поле в них может в сотни и тысячи раз превосходить внешнее поле. Ферромагнитные материалы в большой или меньшей степени обладают магнитной анизотропией, т.е. свойством намагничиваться с различной степенью трудности в различных направлениях. Магнитные свойства ферромагнитных материалов сохраняются до тех пор, пока их температура не достигнет значения, называемого точкой Кюри. При температурах выше точки Кюри ферромагнетик ведет себя во внешнем магнитном поле как парамагнитное вещество. Он не только теряет свои ферромагнитные свойства, но у него изменяется теплоемкость, электропроводимость и некоторые другие физические характеристики. При намагничивании ферромагнетиков происходит небольшое изменение их линейных размеров, т.е. увеличение или уменьшение их длины с одновременным уменьшением или увеличением поперечного сечения. Это явление называется магнитострикцией, оно зависит от строения кристаллической решетки ферромагнетика. Ферромагнетики при температурах ниже точки Кюри обладают спонтанной намагниченностью независимо от наличия внешнего намагничивающего поля. Однако многие ферромагнитные материалы при температурах ниже точки Кюри не намагничены.

 


 

Процесс смешения границ доменов приводит к росту размеров тех доменов, которые самопроизвольно намагничены в направлениях, близких к направлению вектора H. Процесс вращения магнитных моментов доменов по направлению H играет основную роль только в области, близкой к насыщению (т.е. при H близких к Hs ).

Допустим, что кольцевой магнитопровод из ферромагнитного материала не намагничен и тока в витках катушки нет, т.е. B=0 и H=0 (начало координат на рис. 5.12). При постепенном увеличении намагничивающего тока, т.е. МДС (магнито - движущая сила), а следовательно, и напряженности поля от нуля до некоторого наибольшего значения

магнитная индукция увеличивается по кривой начального намагничивания (Оа) и достигает соответствующего максимального значения Ba. Если затем ток и напряженность поля уменьшаются, то и магнитная индукция уменьшается, при соответствующих значениях напряженности магнитная индукция несколько больше, чем при увеличении напряженности. Кривая изменения магнитной индукции (участок на рисунке 5.12) располагается выше кривой начального намагничивания. При нулевых значениях тока и напряженности поля магнитная индукция имеет некоторое значение Br, называемое остаточной индукцией (отрезок Об на рисунке 5. 12).

clip_image146

Таким образом, магнитная индукция в ферромагнитном материале зависит не только от напряженности поля, но и от предшествующего состояния ферромагнетика. Это явление называется гистерезисом. Оно обусловлено как бы внутренним трением, возникающим при изменении ориентации магнитных моментов доменов.

При изменении направления намагничивающего тока, а, следовательно, и направления Рис.5.12 Кривая изменения напряженности поля и

магнитной индукции постепенном увеличении тока обратного направления напряженность поля достигает значения Hc, называемого коэрцитивной силой (отрезок Ов), при котором магнитная индукция B=0. При дальнейшем увеличении тока и напряженности поля магнитопровод намагничивается в противоположном направлении и при напряженности поля Hг = -Ha магнитная индукция достигнет значения Bг = -Ba. Затем при уменьшении тока и напряженности поля до нуля магнитная индукция Bд становится равной -Bб. Наконец, при следующем изменении направления тока и напряженности поля и увеличения ее до прежнего значения На магнитная индукция увеличится также до прежнего значения Ba. Рассмотренный цикл перемагничивания ферромагнетика по кривой абвгдеа называется гистерезисным циклом (петлей гистерезиса).

Такая симметричная замкнутая петля гистерезиса по рисунку 5.12 получается в действительности только после нескольких перемагничиваний с увеличением тока до значения Ia. При первых циклах перемагничивания петля несимметричная и незамкнутая. Наибольшая замкнутая петля, которая может быть получена для данного ферромагнитного материала, называется предельной на рисунке 5. 13. При напряженности поля H > Hmax получается уже безгистерезисный участок кривой B(H).

Если для данного ферромагнитного материала, выбирая различные наибольшие значения тока Ia, получить несколько симметричных петель гистерезиса и соединить вершины петель, то получим кривую, называемую основной кривой намагничивания, близкую к кривой начального намагничивания.

Периодическое перемагничивание связано с затратой энергии, которая, превращаясь в тепло, вызывает нагрев магнитопровода. Площадь петли гистерезиса пропорциональна энергии, затраченной при одном цикле перемагничивания. Энергия, затраченная на процесс перемагничивания, называется потерями от гистерезиса. Мощность потерь на циклическое перемагничивание, выражаемая обычно в ваттах на килограмм, зависит от материала, максимальной магнитной индукции и числа циклов перемагничивания в секунду или, что тоже, частоты перемагничивания.

Ферромагнитные материалы делятся на две группы: магнитно-мягкие и магнитно-твердые.

а) Магнитно-мягкие материалы применяются в качестве магнитопроводов (сердечников) в устройствах и приборах, где магнитный поток постоянный (полюсные башмаки и сердечники измерительного механизма) или переменный (например, магнитопровод трансформатора). Они обладают низким значением коэрцитивной силы Hc (ниже 400А/м), высокой магнитной проницаемостью и малыми потерями от гистерезиса. Намагничивание магнитно -мягких материалов происходит в основном за счет смещение междоменных границ, а в магнитно –твердых –за счет вращения вектора намагниченности (в магнитно –твердых материалах на основе редкоземельных элементов преобладают процессы смещения). К этой группе материалов относятся: техническое железо и низкоуглеродистые стали, листовые электротехнические стали, железоникелевые сплавы с высокой проницаемостью (пермаллои) и оксидные ферромагнетики – ферриты и оксиферы.

Пермаллои – это сплавы различного процентного содержания железа и никеля, а некоторые из них, кроме того, молибдена, хрома, кремния, алюминия. Ферритами называют ферромагнитные материалы, получаемые из смеси окислов железа, цинка и других элементов. При изготовлении магнитопроводов смесь размалывают, прессуют и отжигают при температуре около 1200 ­­0С; таким образом, получают магнитопроводы нужной формы. Ферриты обладают очень большим удельным сопротивлением, вследствие чего потери из-за вихревых токов чрезвычайно, малы и их можно применять при высокой частоте. Ферриты обладают значительной начальной магнитной проницаемостью, незначительной индукцией насыщения(0,18 – 0,32Тл) и малой коэрцитивной силой (8 – 80 А/м).

Магнитодиэлектрики – это материалы, получаемые из смеси мелкозернистого ферромагнитного порошка с диэлектриком (поливинилхлорид, полиэтилен). Смесь формуют, прессуют и запекают; в результате мельчайшие частицы ферромагнетика оказываются разделенными электроизолирующей пленкой из немагнитного материала.

Ферриты и магнитодиэлектрики широко применяются в качестве сердечников в аппаратуре проводной и радиосвязи, в магнитных усилителя, вычислительных машинах и в других областях техники.

Магнито - мягкие материалы намагничиваются в относительно слабых магнитных полях и обладают высокими значениями начальной µн и максимальной µmax магнитных проницаемостей, малым значением коэрцитивной силы Hc . Значения Bmax - максимальной магнитной индукции – соответствует намагниченности насыщения ферромагнетиков.

б) Для характеристики магнитно-твердых материалов используют обычно ту часть кривой гистерезиса, которая лежит во втором квадранте, а в первом изображают изменение удельной магнитной энергии от индукции. Как показано на рисунке 5.14. Магнитная энергия в воздушном зазоре постоянного магнита будет максимальна при некоторых значениях НД и ВД. Условие

clip_image149

Определяет наилучшее использование магнита и является важнейшим параметром, характеризующим качество материала. Множитель ½ иногда опускается. Коэффициент выпуклости

clip_image151

Характеризует форму кривой размагничивания – степени прямоугольности. Для магнитно – твердых материалов. Используемых в различных областях современной техники clip_image153, clip_image155, clip_image157.


clip_image158

Рис.5.14 Зависимость магнитной энергии W от индукции В

Магнитно-твердые материалы предназначены для изготовления постоянных магнитов самого различного назначения. Эти материалы характеризуются большой коэрцитивной силой и большой остаточной индукцией. К магнитно-твердым материалам относятся: углеродистые, вольфрамовые, хромистые и кобальтовые стали.

5.9 Пермаллои

Пермаллои – железоникелевые сплавы с высокой проницаемостью в слабых полях. По составу выделяют низконикелевые (40-50%Ni) и высоконикелевые (72-80%). Такое подразделение обусловлено смещением магнитных электрических характеристик в зависимости от процентного содержания никеля. Обе группы пермаллоев для улучшения элктромагнитных свойств легируются различными элементами, например молибденом, хромом, медью и некоторыми другими элементами. Плавка осуществляется в вакууме или нейтральных газах. Тонкие листы и ленты выпускаются или штампуются холоднокатанными с последующим отжигом для получения высоких магнитных свойств. Поверхность ленты для навивки (при изготовлении тороидальных сердечников) и последующего отжига покрывается тонким слоем окислов кремния, магния или алюминия способом катафореза или осаждением из суспензии, жидкой фазой которой является легко испаряющаяся жидкость, например ацетон. В процессе сборки и эксплуатации сердечников из пермаллоя не допустимы механические напряжения (удары, рихтование, сдавливание обмоткой и другие) из-за ухудшения магнитных характеристик.

Высокие магнитные свойства пермаллоев, их способность легко намагничиваться объясняют близостью к нулю констант кристаллографической анизотропии и намагниченности насыщения, но это же приводит и к большей чувствительности магнитных свойств от внешних напряжений


Механические, магнитные и электрические свойства магнитомягких ферритов


Механические свойства, как и у керамики - твердость, хрупкость, недопустимость обработки резанием. При спекании - усадка от 10 до 20%. Хорошо шлифуются и полируются абразивными материалами, режутся алмазным инструментом. Наиболее широко в качестве магнитомягких ферритов применяют никель-цинковые и марганец - цинковые ферриты, представляющие собой твердые растворы замещения, образованные простыми ферритами NiFe2O4 и МnFe2O4 являющиеся ферромагнетиками, с немагнитным ZnFe2O4. В переменных полях для оценки допустимого частотного диапазона ферриты кроме µ характеризуются tgб- тангенсом угла магнитных потерь. Для ферритов потерями на вихревые токи и гистерезис в области слабых полей можно пренебречь.

При повышении частоты, начиная с некоторой, характерной для данной марки феррита, значения tgб возрастает более резко, при этом уменьшается µнач. Эту частоту называют критической fкp. Частоту, при которой µнач уменьшается до 0.7 от ее значения f = 0 называют граничной – fгр. Причина уменьшения и роста tgб связывается со сложными резонансными и релаксационными процессами. Зависимости µ и tgб от частоты в логарифмическом масштабе для разных марок никель-цинкового феррита показана на рисунке 5.15. Цифра в обозначении марки феррита означает величину начальной магнитной проницаемости µнач.

Магнитные и электрические свойства трех марок никель-цинковых ферритов приведены в таблице r ферритов в зависимости от химического состава и термической обработки изменяется от 10 до 108 Ом м. О сновной недостаток ферритов по сравнению с металлическими магнитными материалами - малое значение их магнитной проницаемости. Некоторые типы изделий из магнитомягких ферритов показаны на рисунке.

 

Марка

феррита

µмакс

Н, А/м

(при µмакс )

fкр, МГц

ρ, Ом м

Tк, °C

2000НН

200 НН

10 ВЧ

7000

300

40

12

160

3700

0.2

3.0

250

10

103

108

70

120

500

clip_image162

Рис.5.16 Типы изделий из магнитомягких материалов


Специальные магнитные материалы


Материалы с цилиндрическими магнитными доменами (ЦМД). применяемые для изготовления запоминающих устройств (ЗУ). Емкость отдельного устройства (типа) на ЦМД может составлять 105 бит. Чем меньше Нc, тем выше быстродействие ЦМД - устройства. Обычно Нс должна быть не больше 10 А/м. Основные материалы с ЦМД устройства приведены в таблице 5.3.

Аморфные магнитомягкие материалы (АММ)

Аморфные магнигомягкие материалы (АММ) являются магнетиками с неупорядоченным расположением атомов, получаемом наиболее часто в результате быстрой закалки расплава со скоростью охлаждения 104106 град/с. Аморфные тонкие пленки с цилиндрическими магнитными доменами (ЦМД) можно получать катодным распылением или вакуумным напылением редкоземельных и переходных металлов. Металлические аморфные сплавы содержат 75-85% одного или нескольких переходных металлов (Fe, Co, Ni) и 15-25% стеклообразователя, в качестве которого используют бор. углерод, кремний, фосфор. По магнитным свойствам АММ близка к электротехническим сталям и пермаллоям. Наиболее перспективные сплавы - железоникелевые. высококобальтовые и высокожелезистые. Для получения оптимальных свойств применяют термомагнитную обработку, что позволяет повысить Bs и прямоугольность петли гистерезиса.

Таблица 5.3 Свойства материалов устройства с ЦМД

Материал

Свойства, особенности технологии,применени

Ортоферриты RFeO3 R - редкоземельный элемент (Y, Sm , Eu , Ег . Yb)

Высокая подвижность доменных границ, прозрачность в красном свете (l = 0.6 мкм ). Плотность информации не велика. 103 – 104 бит/см2

Ферриты гранаты R3Fe5O12

Плотность информации выше 105 – 106 бит/см2, но подвижность доменных границ ниже, чем у ортоферритов. Применяются в виде монокристаллических пленок.

Аморфные магнит. пленки сплав. Cd-Co, CdFe

Плотность информации до 109 бит/см2 . Относительно низкая стоимость. Низкая термостабильность и низкое эл. сопротивление - недостатки.

Гексагональные ферриты ВаFе12О19) и др.

Высокая намагниченность насыщения. Субмикронное ЦМД ,

однако низкая подвижность ограничивает применение. •

Магнитные свойства двух промышленных сплавов после термообработки показаны в таблице 5.4.

Таблица 5.4 Характеристики и магнитные свойства сплавов

Марка

Bs, Тл

µмакс

Нc, А/м

Br/Bs при H, А/м

ρ, мкОм*м

45НПР-А

44НМР-А

0.78

0.88

310000

750000

1.6

0.56

0.93

0.72

1.4

1.6

АММ имеют повышенную твердость и коррозионную стойкость. Удельное сопротивление АММ в 3 - 5 раз больше, чем у кристаллических,

Применение: магнитные экраны, сердечники малогабаритных трансформаторов, магнитных усилителей, головки магнитозаписывающих устройств.


Магнитодиэлектрики


Как и ферриты являются высокочастотными магнитными материалами. По сравнению с ферритами имеют более стабильные свойства, но по ряду электромагнитных параметров уступают ферритам. Получаются по технологии аналогичной технологии пластмасс. МД состоят из мелкоизмельченного ферромагнетика, частицы которого изолированы и скреплены немагнитным материалом. В качестве ферромагнетика наиболее часто используют альсифер, карбонильное железо, пермаллой, в качестве связки как органические материалы такие как бакелит, полистирол, шеллак, так и неорганические - жидкое стекло, стеклоэмали и другие. Прессование изделий из МД - колец, сердечников и т.д. производится при давлениях (14 - 20) 102 МПа (14 - 20 Т/см2), чем выше давление, тем выше магнитная проницаемость.

Примеры магнитных характеристик промышленных магнитодиэлектриков показаны в таблице 5.5.

Таблица 5.5 Магнитные характеристики магнитодиэлектриков

Основа магнитодиэлектрика

Марка

µнач

Пределы линейности тангенса угла потерь

На частоте f, МГц

на величине

Н, А/м

Альсифер

ТЧ-90

ТЧ-22

79-91

19-24

до 0.5

>>20

до 240

>>1200

Карбонильное

P-10

P-100

µэфф

100

100

2400

2.9

1.55

Магнитотвердые материалы

Магнитотвердые материалы применяются в основном для изготовления постоянных магнитов многих устройств в электро- и радиотехнике, автоматике, приборостроении, электронике. По сравнению с электромагнитами постоянного тока имеют ряд преимуществ, главные из которых: повышенная работоспособность; экономия материалов и потребления энергии; экономическая и техническая выгода применения.

Для получения высокой коэрцитивной силы в магнитных материалах кроме выбора химического состава используют технологии, оптимизирующие кристаллическую структуру и затрудняющие процесс перемагничивания - это закалка сталей на мартенсит, дисперсионное твердение сплавов, создание высоких внутренних механических напряжений, посторонних включений при высокой магнитострикций и других. В результате затрудняются процессы смещения доменных границ. У высококоэрцитивных сплавов магнитная текстура создается путем их охлаждения в сильном магнитном поле.

Сплавы на основе железа - никеля - алюминия

Сплавы на основе железа никеля - алюминия применяют в основном легированные медью и кобальтом. Высококобальтовые сплавы с содержанием Со более 15% используют обычно с магнитной и кристаллической текстурой. Намагничивание этих сплавов происходит главным образом за счет процессов вращения векторов намагничивания. Эти сплавы отличаются высокой твердостью и хрупкостью, поэтому магниты из них изготавливают методом литья. Обрабатывается шлифовкой, в том числе с применением алмазного инструмента, ультразвука и др. Самые дешевые бескобальтовые сплавы ЮНД и другие, но магнитные свойства у них относительно низки. ЮНДК-15 и ЮНДК-18 магнитоизотропные сплавы с относительно высокими магнитными свойствами. Сплавы ЮНД с 24% Со имеют высокие магнитные свойства в направлении магнитной текстуры, полученной при термомагнитной обработке. ЮНДК-35Т5БА обладают наибольшей энергией Wmax (Wmax=35-40 кДж/м3). ЮНДК-40Т8 -титанистый сплав, применяемый в сильно разомкнутых системах. Имеет наиболее высокую коэрцитивную силу.

Металлокерамические магниты

Получают методами порошковой металлургии из сплавов Fe-Ni-AI-Co и из деформируемых сплавов Cu-Ni-Co, Cu-Ni-Fe, Fe-Co-Mo, Pt-Co и Ag-Mn-Al.

Механическая прочность их в 3-6 раз выше, чем у литых магнитов, но пористость в 3-5% снижает Wmav на 10-20%.

Магнитотвердые ферриты

Применяются главным образом феррит бария ВаО*6Fе2Оз, феррит кобальта CoO*Fe2O3 и феррит стронция SrО*6Fе2Оз. Высокая Нс этих материалов связана с малым размером кристаллических зерен и сильной магнитокристаллической анизотропией. Магниты из ферритов можно использовать при высоких частотах, что связано с высоким удельным сопротивлением. У бариевых ферритов, например ρ=104 -107 Ом*м, Промышленность выпускает бариевые изотропные (БИ) и бариевые анизотропные (БА) магниты, получаемые прессованием в магнитном поле. Анизотропные магниты обладают более высокими магнитными свойствами (Wmax,Hс). По сравнению с литыми бариевые магниты имеют много большую Нс и малую Bs, отличаются высокой стабильностью при воздействии магнитных полей, различных механических воздействий, структурного старения. Стоимость магнитов из ферритов почти в 10 раз меньше, чем у магнитов из сплава ЮНДК-24. Недостатки - большая хрупкость и твердость, сильная зависимость магнитных свойств от температуры.

Сплавы на основе редкоземельных металлов (РЗМ)

Сплавы на основе РЗМ обладают очень высокими значениями Нс и Wmax. Наибольший интерес представляют соединения RCo5 и R2Co17, где R- редкоземельный металл. Для бинарных соединений этой группы Wmax = 190 кДж/м3, для тройных сплавов типа R2(Co1-xFex), где х < 0.6 на основе самария и празеодима Wmax= 240 кДж/м3 (теоретическое значение).

Магниты из этих сплавов получаются наиболее часто жидкофазным спеканием из порошков. Например, магниты на основе SmCo5 спекаются после прессования при температуре 1100 °С в течение 30 минут в атмосфере чистого аргона.