Материалы высокой проводимости
Среди металлов высокой проводимости наиболее широко применяются медь и алюминий. Медь из-за малого удельного сопротивления (наименьшего среди металлов, исключая серебро) используют в качестве проводникового материала; кроме того, она обладает достаточно высокой механической прочностью, высокой коррозионной стойкостью и хорошей обрабатываемостью (прокат, волочение, ковка, а также пайка и сварка). Производство меди основано на переработке медных руд - оксидных и сульфидных соединений меди, хотя медь может встречаться в природе и в самородном состоянии.
По механической прочности различают медь твердую не отожженную - МТ и мягкую отожженную медь - ММ. По содержанию химических примесей медь подразделяется на марки по ГОСТ 859 - 78.Электрические характеристики меди следующие: удельная проводимость наиболее чистой электролитической меди при 20 0С - 59,5 МСм/м; удельная проводимость отожженной стандартной меди при 20 - 58 МСм/м; удельное сопротивление стандартной меди при 20 0С - 0,017241 мкОм м; температурный коэффициент удельного сопротивления при 0..150 °С a(r). 10 - 4,3 1/К; отношение удельного сопротивления расплавленной меди к сопротивлению твердой меди при tплавления - 2,07; термоЭдС относительно платины при температуре холодного спая О 0С - 0,14 мВ; работа выхода электронов - 4,07...4,61 кВ из металла; число Лоренца L0. = 2,45.10-8 В2/К2. При низких температурах удельное сопротивление меди становится весьма малым, однако сверхпроводимостью она не обладает. Число Лоренца не постоянно и при уменьшении температуры понижается, однако при Т < 100 0К снова возрастает. В электротехнике медь применяется для изготовления проводников, шин распределительных устройств, токоведущих частей приборов и электрических аппаратов, анодов в гальванопластике. В электронной технике из меди изготавливают: аноды генераторных ламп (с принудительным охлаждением); стойки антикатодов трубок рентгеновского излучения; траверсы сеток приемно-усилительных ламп, все внешние токоподводящие вводы; проводящую часть печатных плат и т.д. Медь используется в спаях со стеклами, хотя у нее коэффициент линейного расширения больше, чем у стекол, н зато она обладает низким пределом текучести, мягкостью и высоким коэффициентом теплопроводности. Для впаивания в стекло медному электроду придается специальная форма в виде тонкого рантика (так называемые рантовые спаи). Для повышения механической прочности медь применяется в виде сплавов бронз и латуней.
При изготовлении конструкционных и проводящих частей приборов и аппаратов, (в том числе для щеткодержателей и коллекторных пластин) используют следующие бронзы: оловянные, обрабатываемые давлением (ГОСТ 5017 - 74); бронзы литейные (ГОСТ 613 - 79); бронзы безоловянные литейные (ГОСТ 493 - 79). Проводниковые бронзы применяются для изготовления контактов, троллейных проводов, зажимов и электродов. Латуни представляют собой медно-цинковые сплавы и так же, как и бронзы, обладают более высокой механической прочностью и повышенными значениями удельного электрического сопротивления. Латуни делятся на обрабатываемые давлением и литейные. Обычно они паяются мягкими и твердыми припоями и допускают электрическую и газовую сварку. Марки латуней, обрабатываемых давлением, определены ГОСТ 15527 -70, а литейных - ГОСТ 17711-80. Вторым по значению удельной электрической проводимости после меди при нормальной температуре является алюминий. При низких температурах он становится даже более проводящим, чем медь; это происходит при температуре около 70 0К. Классы и марки первичного алюминия устанавливаются в зависимости от способа получения и его химического состава. Особо чистым является алюминий марки А999, в котором примеси составляют всего 0,001%, а чистого алюминия содержится не менее 99,999 %. существует четыре марки химически чистого алюминия, в которых количество каждой примеси нормируется, например, марка А995; чистого алюминия не менее 99,995 %, примеси (не более); железо 0,0015%, кремний - 0,0015 %, медь - 0,001 %, цинк 0,001 %, титан - 0,001 %. При этом общее количество примесей не должно превышать 0,00 5%. Технически чистого алюминия существует восемь марок. Наиболее распространен алюминий марки АЕ, который должен обеспечивать для изготовленной из него и отожженной при температуре 350 - 20 °С проволоки удельное электрическое сопротивление при температуре 20 0С не более 0,028 мкОм м. Согласно ГОСТ 4784 - 74 ‚ Сплавы алюминиевые деформируемые имеются четыре марки сплавов, представляющих собой алюминий с нормируемым количеством примесей. Марки АДОС, АДО, Ад1 и Ад, в которых алюминия должно быть не менее 99,7%, 99,5%, 99,3% и 98,8% соответственно.
Электрические характеристики алюминия следующие: при 20 °С удель-ная проводимость чистого алюминия (отожженного при 320 °С в течение З ч ) составляет 38 МСм/м; удельное сопротивление р алюминия АБ 0,028 мкОм-м; температурный коэффициент удельного сопротивления при 0 …. 150 0С a(r) 10-3 = 4 1/К; отношение сопротивления расплавленного алюминия к сопротивлению твердого алюминия при температуре плавления - 1,64; работа выхода - 4,25 эВ; число Лоренца L0 = 2,1 10-8 В2/К2.
При нормальной температуре, одинаковых сечениях и длине электрическое сопротивление алюминиевого провода больше, чем медного, в 1,63 раза. Значит, чтобы получить алюминиевый провод такого же сопротивления, что и медный, нужно взять его сечение в 1,63 раза большим, т.е. его диаметр должен быть больше в 1,3 раза. При ограниченных размерах изделий замена в них меди на алюминий невозможна, но зато масса двух одинаковых по длине и электрическому сопротивлению медного и алюминиевого проводов показывает, что алюминиевый, хотя и толще медного, но весит примерно в 2 раза меньше.
В электротехнике алюминий заменил дорогостоящую медь. Он используется для изготовления электрических проводов, кабельных, тонкопленочных и других токопроводящих изделий, в качестве обмоток асинхронных двигателей, для производства сплавов, для изготовления конденсаторов и конденсаторной фольги, для электровакуумной техники (электроды в разрядниках, катоды в ионных рентгеновских трубках) и т.д.
Прокатка, протяжка и отжиг алюминия аналогичны этим операциям над медью; алюминий хорошо варится, но обычными методами не паяется. На воздухе он активно окисляется, покрываясь тонкой оксидной пленкой с большим электрическим сопротивлением. Эта пленка, предохраняя алюминий от дальнейшей коррозии, создает большое переходное сопротивление в местах контакта алюминиевых деталей и делает затруднительной их пайку. Для пайки алюминия обычно используют ультразвуковые паяльники, специальные припои. В местах контакта меди с алюминием, особенно под воздействием влаги, образуется местная гальваническая пара, причем полярность ее Такая что ток идет от алюминия к меди ( по внешней поверхности ), и алюминий разрушается коррозией. Для защиты от коррозии необходимо тщательно изолировать места соединения меди и алюминия (покрыватьлаком, например). Несмотря на то, что алюминий имеет низкую механическую прочность, его сплавы обладают повышенной механической прочностью.
Сплавы делятся на алюминиевые деформируемые (ГОСТ 4784-74) и алюминиевые литейные (ГОСТ 2685-75). Первые предназначены для изготовления гюлуфабрикатов (прутков, профилей, полос, листов, проволоки, панелей, труб, Штамповок и поковок ) методами холодной или горячей обработки. Вторые - для изготовления фасонных отливок.
К материалам высокой проводимости относится большая группа металлов, применяемых в электротехнике (с ними можно ознакомится в соответствующей литературе), но по массовости применения, они не идут ни в какое сравнение с алюминием и медью